LAURIBERTO SERILLO JUNIOR

UM ESTUDO COMPARATIVO ENTRE RUP E XP

Monografia apresentada a
Escola Politécnica da
Universidade de S3o Paulo
Para conclusio do curso de

Engenharia se software

Séo Paulo
2004

LAURIBERTO SERILLO JUNIOR

UM ESTUDO COMPARATIVO ENTRE RUP E XP

Monografia apresentada a
Escola Politécnica da
Universidade de Séo Paulo
Para conclusido do curso de
Engenharia se software

Area de Concentragio:
Processos de Software
Orientador:;

Prof. Dr. Kechi Hirama

Sdo Paulo
2004

Aos meus pais, minha irm3 e minha namorada
que sempre me incentivam e apoiam para que

eu consiga atingir meus objetivos.

AGRADECIMENTOS

Ao Prof. Dr. Kechi Hirama pela orientagfo, incentivo ¢ compreensdo durante a

elaboragio deste trabalho.

E a todos que colaboraram e incentivaram o desenvolvimento deste trabatho.

RESUMO

Este trabalho propde um estudo comparativo entre dois processos de
desenvolvimento de software 0 RUP e o XP visando incentivar a discussdo que a
escolha e a correta utilizagdo dos processos de software sdio fatores determinantes
para o sucesso do projeto de software. E apresentado cada um dos processos
identificando suas melhores praticas e como cada um busca transformar estas
praticas em beneficios para o projeto. Por fim, € feito um paralelo entre estas

praticas apresentando 0 que os processos tem em comum e onde divergem.

ABSTRACT
This research considers a comparative study between two processes of software
development: the RUP and the XP aiming at to stimulate the discussion of the choice
and the correct use of software processes as determinative factors for the success of
the software project. Each one of the processes is presented identifying its best
practices and how it can transform these into benefits for the project. Finally, a
parallel between these practices is done presenting what the processes have in

common and what they differ.

1 —INTRODUGAOQ......ooooieeecteetieeeeesie s sseseessssssssaesesesssess e rasessesssssssnsmssssassansseos 1
1.1 = OBJELIVO......ocveerieietercreererec e sbsiesse s ns st b e s s sas s ena s sssaasssas e sbas s r e s 3
1.2 = MOLIVAGOEScvvevericitcieniens sttt rrass s ab bbb e et s s aas 3
1.3 — Estrutura do traballiocoovieeeienreneee st ineicrniesnsesis e 4

2 — DEFINICOES E ABREVIATURAS.........oovemreeenerrecnsensseisssensasssnssssssrosssssss 5

3 - RUP - PROCESSO UNIFICADO RATIONALcoviiiiiiiniinnicniceneee 6
3.1 — Introdugdo 20 RUPccooorerirviriiieccm e 6
3.2 - Desenvolvimento efetivo com RUP.......cooocinieiiniiinii i 7

3.2.1 - Desenvolvimento {eratiVo.........ccvvrervrrressisisnieniesniensesesssns e 7
3.2.2 - Gerencia de TEQUISIOScvervrecirveririririresnsesenn et e 8
3.2.3 - Uso de arquiteturas baseadas em COMPONENLES...........c.cocvuiisiiinnnsinnenes 8
3.2.4 - Modelagem visual do SOftWATE.......cciemeriinnictince e 9
3.2.5 - Verifica¢do da qualidade do software ... 9
3.2.6 - Gerenciamento de mudangas do software..............ccceevevrnricninenn 10
3.3 — Caracteristicas do RUP.......ccooviieriirieccre sttt st e 10
3.4 ~ Fases € IEIACOEScveveverereerrerererreseenerissestesisssssssss s s snssnsssnesnsssseniounsssanens 11
3.4.1 - CONCEPGAD --.overerrirnrererreirisisiresis i s ses s sr e s e sa e e sr e st s sy s s abea s e 11
3.4.2 - BIADOTAGAO ...ovceieeeee sttt 13
3.4.3 = CONSITUGADcuvivertereeerecsieeecentesie s srrsbs b e ran s s s s s e e e brs e s b b 15
3.4.4 - TrANSIGHO ...cocvvveveeireecercrcrcrcse s e ue e s et st s 16
3.4.5 = HETAGOES . ..vevvcieereiereerce s eree ettt rr e eee e s st s bt a bt 18
3.4.6 - Beneficios de um processo iterativo.......cocovvveirineniinsnecnneneencns 18
3.5 - Estrutura estatica d0 PrOCESSO.....ovcrerinieirmiiirie e nnenrsssrsssese e 18
3.5.1 = PAPAIS ..o bt s A e 19
3.5.2 - AtIVIAAAES ...ttt erere et sn e es e b an et 19
3.5.3 = ATTETALOS ..evvicves e e eiteceircrre v e e ee s e et b e s s an et nen e s e an e rg b s 20
3.5.4 - FIUX0 de rabalhtocovoreeiieieeieeeete ettt 20
3.6 — Divisdo do fluxo de trabalho n0 RUP ..o 21
3.6.1 - Modelagem de NegOCiO........ouevrvemriimvenieieinnsie s 21
2.6.2 « REQUISTLOSvovvieieeeieeceinini st rnvesns e essni s sttt st 22
3.6.3 - ANALISE € PIOJEIO ...ovoveveirecrrrerrecersssire sttt s st st 23
3.6.4 - IMPIEMENIAGAO.c.couvvriiirintititiirs b bs st eniss s 24
3OS L TRESHEY. soviuveensints s o vaessagunas f5asavaaToaoR RS Ea SRR s SES RS S e S E s e Sa s s o « S - AL 25
3.6.6 - BIOTEEA.....cocvovieierereciiie it bt 25
3.6.7 - Gerenciamento dO PrOJELOcccovvirivrnsreecesinnis st 26
3.6.8 - Gerenciamento de configuragio..........ccevvvvviinineniininenn 26
3.6.9 « AMDIEINIE ...ooiiiiiiieeeiereeseneeeeeeaeessesnes et e raae s st saressrsseaseebsenann s raneseneens 27

4 — EXTREME PROGRAMMINGcoveveeeeeinniniinine s 29
4.1 — Introdugfio ao Extreme Programming ... 29
4.2 - Ciclo de vida e as fases do processo XPccooovi i 30

4.2.1 = EXPIOTAGHODcecvcerivieeiiciiensme sttt 31
4.2.2 - PIANGJAMENTOcovvveviiveiir it sireseies s banssas s s 32

4,23 c TEEIACOES. ... oo eveeee e s e e cne e reeas s ae s se e et e 32

4.2.4 - ProduGlooooeureve et et 33

4.2.5 - MANULENGAOvvveimieeirieiinee et e siseessssib s e sb s e 33
4.3« ATVIAAAES oeeoeeeeiieee et et b e ene e see e en bbb 33
4.3.1 — PlANGJAMENLO .. .c..coivriiirerieiiieerscretetsi ettt 34
Bi3.2 < TIOBLE. ... o0 oes iysiesssssissssnssssasansassasanmsssassasosasiotstsnevass svonsmmsns bomastsaeatatantog s dos 38
4.3.3 - COdIICAGHD ... vttt 40
B.3.4 - PROJELO. ..cvourieereriretciris oo ses ettt e 44
4.4 - As quatro dimensdes do XP ..o 47
4.4.1 - COMUNICAGAD ...oueeveriirrierentir it sn it sb e et s 47
4.4.2 - SIMPHCIAAAEo 47
4,43 — RealImentacion.cccrirrereeicieit ettt 48
4.4.4 - COTAZEIM....eeuemrenimiririnien e nae st 49
4.5 - Principios DASICOS....ccvove.coiimiiiiirieiteic e 50
5 -~ COMPARACAO ENTRE RUP EXP.....ocoirieciniinmiinnirsinnss s ssnseenes 52
5.1 - Componentes de XP e RUPco.coooiiiiii s 52
5.2 — Uma Breve Comparagioccoevveivsiioricmis i 52
5.3 - 05 A0ZE PIINCIPIOS. ..vveirieririee it e 54
5.3.1 = PIanEJamENLOccoouereeieciieiiiiiaeriiesnieissrnsess et 55
5.3.2 - Pequenos [angamentoscoccuriemericeserssremncsecaonens s 56
5.3.3 - Metafora de SISTEIMA.......cccevirveierirereriaem st 57
5.3.4 - Projeto SIMPLES......ooivviieiiii e 58

S BUS =NTCGTT . o 0 O 0 BB o it 0 TR SRR Y. R 59
5.3.6 - RECONSITUGHD ..oveovveviieectreeereeeceeteiss e cssss e 60
5.3.7 - Programagio 805 PATEScourururreniecsessscsiinsirtnns et 60
5.3.8 - Propriedade COIBHIVAoooviiiiimiiiie s 60
5.3.9 - Integragio COMMIMUA.coooiuiiiiiceice e 62
5.3.10 — Quarenta (40) horas de trabalho semanal............ccooiinnns 62
5.3.11 - Cliente dedicadocovoveieeerecceievin e 63
5.3.12 - COAigo Padriocooviviiiiieecece 63
5.3. 13 —RESUINIO ...oeeeoviieneereert e ceesareetsasessae s arra s e s es et nr e an ettt 64
6 = CONCLUSOES.....ceoeeveeet oot teee et ere s st et an st e 65
6.1 - Contribuigdes do trabalhio ..o 66
6.2 - Trabalhos TULUTOSoviereeieeieieee ettt e 66

7 — REFERENCIAS BIBLIOGRAFICAS ..ot eeer et ena e 68

LISTA DE FIGURAS

Figura 1 — Fluxo de trabalho no RUP ... 10
Figura 2 — Maiores marcos do RUP........coooiiiiiiin 11
Figura 3 — Estrutura estatica do RUP ..o 19
Figura 4 — Papéis N0 RUPcoiiiiiiiiniins sttt s s 19
Figura 6 — Ciclo de vida do XP ... 31

Figura 5 — Ciclo de realimentagfio do XPccoioiiiiiiiii i, 49

LISTA DE TABELAS

Tabela 1 — Resultado da comparagdo RUP com XP......ccoooviinii

Um estudo comparativo entre RUP ¢ XP 1

1 - INTRODUCAO

A dependéncia ¢ a demanda crescentes da sociedade em relagfio a software. tém
evidenciado uma série de problemas relacionados ao processo de desenvolvimento
de software:

¢ alto custo;

¢ alta complexidade;

e dificuldade de manutencéo,

e atrasos de cronograma; €

e disparidade entre as necessidades dos usudrios € o produto

desenvolvido.

Estes problemas existem na 4rea de Software desde sua criagio. Para administra-los,
a comunidade de Engenharia de Software, 2o longo dos ultimos 30 anos, estuda €
implementa praticas de desenvolvimento de software bem organizadas ¢

documentadas.

Parte do trabalho dos pesquisadores envolvidos com a Engenharia de Software tem
sido descrever e abstrair modelos de processos de software. Estes modelos permitem
que se compreenda o processo de desenvolvimento dentro de um paradigma
conhecido. A existéncia de um modelo é apontada como um dos primeiros passos

em direcdo ao gerenciamento ¢ a melhoria do processo de software.

A maior parte dos modelos existentes ¢ baseada em premissas tradicionais da érea,
uma divisio discreta das atividades do processo de software, focado em
perenciamento, medidas e registros destas atividades. Com isto surgiram VArios
modelos sendo que um dos mais difundidos na atualidade € o RUP (Processo

Unificado Rational).

O RUP é um processo orientado ao produto (software) e ndo um processo de
geréncia de projeto. Ele contém uma colegdo de modelos, diretrizes. tluxos de

trabalho que ajudam os gerentes de projeto a executar diferentes tipos de projetos de

Um estudo comparativo entre RUP ¢ XP 2

desenvolvimento de software. Além do RUP existem outros modelos, no entanto,
ndo existe um modelo uniforme que possa descrever com precisdo o que de fato
acontece durante todas as fases da produgdo de um software; os processos
implementados sdo muito variados, e as necessidades de cada organizagdo diferem

substancialmente.

Além disso, na Ultima década, um segmento crescente da comunidade de Engenharia
de Software vem defendendo a existéncia de problemas fundamentais da aplicaggo
sistematica € institucionalizada de processos de software convencionais. Estes
proponentes defendem processos simplificados, focados nas pessoas que compdem o
processo, ¢ principalmente no programador. Como diz Bach [13]: “Nas conferéncias
e nos periodicos, a extraordinria atengdo dada ao processo de desenvolvimento de
software ¢ mal dirigida. Muito se escreve sobre processos ¢ métodos para
desenvolver software; muito pouco sobre o cuidado ¢ alimentagfio das mentes que de

fato escrevem o software”.

Eles defendem métodos conhecidos como “ageis” ou “leves” sendo que um dos mais
importantes destes métodos ¢ o XP (Extreme Programming). O XP propde uma
maneira de desenvolver software onde existe uma grande preocupagéo em equilibrar
as varidveis custo, tempo e qualidade do produto, utilizada em projetos curtos onde a
varidvel tempo ¢ critica para o cliente. Para atingir estes objetivos o XP considera
alguns principios béasicos: realimentagio répida, simplicidade, mudancas

incrementais, adaptar-se a mudangas e trabalho de qualidade.

Alguns estudos e pesquisas que foram realizados nos anos 90 demonstraram que o
gerenciamento de projeto ¢ a causa mais evidente das falhas na execugdo ¢ entrega
de produtos e servigos de software. O SEI-Software Engineering Institute da
Universidade de Carnegie Mellon dos EUA constatou j4 em 1993 que o principal

problema que aflige as organizagdes de sofiware € gerencial.

Um estudo conduzido pelo DoD-Department of Defense também dos EUA indicou

que 75% de todos os sistemas de software falham, e que a causa principal é o fraco

Um estudo comparativo entre RUP ¢ XP 3

gerenciamento por parte do desenvolvedor e adquirente, deixando claro que o
problema néo € de desempenho técnico.

O estudo realizado pelo Standish Group dos EUA, chamado de relatdrio do
"Chaos"[1], focou a indistria de software comercial. Esse estudo identificou que: as
empresas dos Estados Unidos gastaram $81 bilhSes em projetos de sofiware que
foram cancelados em 1995; 31% dos projetos estudados foram cancelados antes de
serem concluidos; 53% dos projetos de software que foram concluidos excederam
mais do que 50% a sua estimativa de custo; somente 9% dos projetos, em grandes

empresas de desenvolvimento de software, foram entregues no tempo € or¢camento.

Portanto entender as principais vertentes de processos e qual melhor se adapta ao

projeto e a corporagio sdo fatores importantes para o sucesso dos projetos.

1.1 - Objetivo

Este trabalho tem por objetivo apresentar dois dos mais difundidos processos de
desenvolvimento de software e fazer um estudo comparativo entre eles. O objetivo ¢
oferecer subsidios para a escolha de um processo que seja adequado ao tipo de
projeto e grau de maturidade da corporagéo e ainda apresentar as boas praticas de

cada um deles.

1.2 - Motivacdes
Cada vez mais os projetos de software s@o exigidos nas questdes de prazo, custo,

qualidade e manutencfo. Isto nos remete a uma série de incertezas tais como:

. O projeto produzira um produto satisfatorio?

. O projeto produzira um produto de qualidade?

o O projeto terminara no prazo?

. Sera necessario trabalho além do previsto?

. Os compromissos com o cliente serdo cumpridos?

Estas incertezas nos motivam a utilizar processos para gerenciar nossas atividades ¢

com isto minimizar estes riscos.

Um estudo comparativo entre RUP ¢ XP 4

Porém muitos estudos mostraram que a maioria dos fatores que afetam o

desenvolvimento de software sdo falhas especificas no dominio do gerenciamento de

projeto, ou estdo diretamente associados as praticas de gerenciamento mal

empregadas. Isto mostra que além de utilizar processos de gerenciamento &

importante escolher qual melhor se adapte 4 cada projeto. Portanto, a motivagio

deste trabalho é apresentar duas diferentes vertentes de processos de software, ou

seja, métodos ageis (“leves™) e métodos tradicionais (“pesados”) através de seus dois

mais difundidos exemplos, para com isto ajudar na escolha e aplicagdo do processo

adequado para cada situagio.

1.3 — Estrutura do trabalho

Este trabalho esta dividido nos seguintes capitulos:

O capitulo 1 descreve o objetivo e as motivagdes do trabalho.

O capitulo 2 apresenta as defini¢gdes e abreviaturas utilizadas no trabalho.

O capitulo 3 descreve o Processo Unificado Rational apresentando sua forma
de desenvolvimento, fases e fluxo de trabalho.

O capitulo 4 descreve Extreme Programming apresentando suas dimensdes,
ciclo de vida e as atividades executadas durante o ciclo de vida.

O capitulo 5 faz uma comparagdo entre os dois processos apresentados
anteriormente tomando como ponto base os principios de Extreme
Programming.

O capitulo 6 descreve as conclusdes do trabalho, as contribuigdes ¢ uma
proposta de trabalhos futuros.

No capitulo 7 encontram-se as referéncias bibliograficas utilizadas no

trabalho.

Um estudo comparativo entre RUP e XP 5

2 - DEFINICOES E ABREVIATURAS

Ator

Um conjunto coerente de papéis que os usuarios de
casos de uso desempenham ao interagir com os casos de

UsG.

Casos de Uso

A descrigdo de um conjunto de seqiiéncias de agdes,
incluindo variantes, que um sistema realiza, fornecendo

o resuitado observavel do valor de um ator.

Cartdes CRC (Classe Responsabilidade Colaboragio) Cartdes CRC
sdo utilizados para gravar as responsabilidades e
colaboradores das classes.

Cenario Uma seqiiéncia especifica de agdes que ilustram o
comportamento.

Classes A descricio de um conjunto de objetos que
compartilham os mesmos atributos, operagdes,
relacionamentos e seméntica.

Estorias Algo que o cliente deseje que o sistema faga. As
estorias podem ser testadas.

Modelo de objetos Um modelo que mostra um conjunto de objetos e seus

relacionamentos em um ponto no tempo; os modelos de
objetos abrangem a visdo estitica de projeto ou a visdo

estatica de processo de um sistema.

Propriedade coletiva

E a equipe como um todo sendo responsével por cada
arquivo de codigo. Qualquer membro da equipe pode

alterar o cddigo.

Stakeholders Alguma pessoa ou representante de uma organizagio
que tem interesse no resultado de um projeto. Um
stakeholder pode ser um usudrio final, um comprador,
um desenvolvedor ou um gerente de projeto.

UML (Unified Modeling Language) Linguagem de |

;
Modelagem Unificada, uma linguagem para 2

visualizagdo, especificagio, construgdo e documentagio

de artefatos de umn sistema complexo de software.

Um estudo comparativo entre RUP e XP 6

3 - RUP - PROCESSO UNIFICADO RATIONAL

3.1 — Introducio ao RUP

O Processo Unificado Rational (RUP) ¢ um processo de engenharia de software que
prové uma forma disciplinada de definir as tarefas e responsabilidades dentro de uma
organizacdo de desenvolvimento de software. Sua meta € assegurar a produgio de
alta qualidade de software para que este satisfaga as necessidades de seus usudrios,

dentro de prazo e custo previsiveis. [4].

O Processo Unificado Rational (RUP) procura aumentar a produtividade da equipe,
proporcionando para todos membros facil acesso 4 uma base de conhecimento com
diretrizes, modelos e ferramentas para todas as atividades criticas do
desenvolvimento. Para que todos tenham acesso 4 mesma base de conhecimento, ndo
importando se trabatha com requisitos, projeto, teste, gerenciamento do projeto, ou
gerencia de configuragio, 0 RUP tenta assegurar que todos os membros da equipe
compartilham uma linguagem comum e uma visdo de como desenvolver software.
As atividades do RUP criam e mantém modelos. Em lugar de produzir uma grande
quantia de documentos, o RUP enfatiza o desenvolvimento ¢ manutengfo de

modelos.

O RUP ¢ um guia de como usar efetivamente a Linguagem Unificada de Modelagem
(UML). A UML é uma linguagem padro que nos permite comunicar claramente
requisitos, arquiteturas e projeto. O Processo Unificado Rational ¢ apoiado por
ferramentas que automatizam grandes partes do processo. Elas sdo usadas para criar
e manter os varios artefatos do processo: modelagem visual, programaco, teste, etc.
Estas ferramentas sdo importantes para apoiar o gerenciamento de mudangas € o

gerenciamento de configuragfo de cada iteragdo.

O Processo Unificado Rational é um processo configurdvel. Ele se ajusta a pequenas
equipes de desenvolvimento como também grandes organizagdes de

desenvolvimento. O Processo Unificado Rational é baseado em uma arquitetura de

Um estudo comparativo entre RUP ¢ XP 7

processo simples e clara através de um conjunto de processos. E estas podem ser

modificadas para acomodar as diferentes situag8es das organizagdes.

O Processo Unificado Rational captura muitas das melhores praticas do
desenvolvimento de software, em uma forma que € satisfatdria para uma gama

extensiva de projetos e organizagdes.

3.2 - Desenvolvimento efetivo com RUP
O Processo Unificado Rational descreve como utilizar praticas efetivamente
comprovadas para as equipes de desenvolvimento de software. Estas sdo chamadas
“melhores praticas” nfo por poder quantificar o seu valor, mas porque elas sfio
utilizadas com sucesso nas organizagdes. O Processo Unificado Rational prové
diretrizes, modelos ¢ ferramentas para que a equipe tire proveito das praticas:[2]

1. Desenvolvimento iterativo
Gerencia de requisitos
Uso de arquiteturas baseadas em componentes
Modelagem visual do software
Verificagio da qualidade do software

Gerenciamento de mudangas do software

A T

A seguir, as praticas sf0 descritas com mais detalhes.

3.2.1 - Desenvolvimento iterativo

Dados os sistemas de software sofisticados de hoje, ndo ¢ possivel executar de uma
forma seqiiencial, primeiro definir o problema inteiro, projetar a solugdo inteira,
construir o software e entio testar o produto todo. E necessaria uma forma iterativa
que permita a compreensdo crescente do problema por sucessivos refinamentos

desenvolvendo uma solug8o efetiva através de miltiplas iterag¢Ges.

O RUP sugere uma forma iterativa para o desenvolvimento onde estas iteragdes
tratam os riscos mais altos em todas as fases no ciclo de vida, buscando assim reduzir
o risco do projeto. Estas iteragdes minimizam os riscos através de liberagdes

freqiientes, executaveis que propiciam envolvimento do usudrio € a continua

Um estudo comparativo entre RUP e XP 8

avaliagio do produto. Cada iterago termina com a liberagdo de um executavel A
equipe de desenvolvimento estd focalizada em produzir resultados, € freqiienternente
estes resultados sdo conferidos a fim de assegurar que o projeto fique dentro dos
prazos acordados. Com esta forma iterativa também se torna mais fécil efetuar

mudangas de requisitos, caracteristicas ou cronograma.

3.2.2 - Gerencia de requisitos

O Processo Unificado Rational descreve como extramr, organizar, documentar
requisitos e funcionalidades; rastrear mudangas de documentos e decisOes; €
facilmente capturar ¢ comunicar requisitos de negocio. As nogdes de caso de uso €
cendrios descritos no processo provaram ser um excelente modo para capturar
requisitos funcionais ¢ assegurar que estes conduzem o projeto, implementagio e
teste de software, buscando assim que o sistema final cumpra as necessidades

solicitadas pelo usudrio[2].

3.2.3 - Uso de arquiteturas baseadas em componentes

O processo se orienta em desenvolver uma arquitetura base, antes de executar
qualquer desenvolvimento completo. Descreve como projetar uma arquitetura
flexivel, que aceita mudangas, ¢ intuitivamente compreensivel, e promove o reuso do
software. O RUP apéia o desenvolvimento de software baseado em componentes.

Estes componentes sdo médulos, subsistema que cumprem uma fungéo clara.

O Processo Unificado Rational prové um modo sistematico para defimr uma
arquitetura que usa componentes novos e existentes. Oferecendo modelos para
descrever a arquitetura baseado no conceito de multiplas visdes da arquitetura, e

provendo diretrizes para a escolha da arquitetura.

Os componentes sfo agrupados dentro uma arquitetura bem definida, ou em uma
infra-estrutura de componente como a Internet, CORBA, e COM, para qual a

industria de componentes reutilizaveis esteja emergindo.[2]

Um estudo comparativo entre RUP ¢ XP 9

3.2.4 ~ Modelagem visual do software
O processo mostra como a modelagem visual captura a estrutura € o comportamento
de arquiteturas de componentes. Isto permite abstrair os detathes e escrever codigo

usando blocos de construgdo grafica.

Estas abstragdes visuais ajudam a comunicar aspectos diferentes do software; vendo
como os elementos do sistema se ajustam, estes blocos de construcdo sdo
consistentes com seu codigo; mantendo assim consisténcia entre um projeto € sua
implementagdo, propiciando uma comunicag#o continua entre todas as fases e

pessoas de modo que ndo se torne ambigua [3].

3.2.5 - Verificaciio da qualidade do software
Baixo desempenho da aplicagio e baixa confiabilidade sdo fatores comuns que
inlbem a aceitagio das aplicagdes de software de hoje. Consegiientemente, a
qualidade deveria ser revisada com respeito aos requisitos baseada em
confiabilidade, funcionalidade e¢ desempenho do sistema. Verificar a qualidade
soluciona varios problemas do desenvolvimento de software:
e A avaliagio de projeto deixa de ser subjetiva por ser feita com base
nos resultados dos testes e ndo em documentos;
e Esta avaliagio tem por objetivo mostrar as inconsisténcias nos
requisitos e a sua implementag3o;
e Os testes sdo focados em dreas de alto risco aumentando a qualidade e
diminuindo estes riscos;
e Qs erros sdo identificados mais rapidamente, reduzindo assim o custo
de sua correcdo; e
e O uso de ferramentas automatizadas auxiliam na avaliagio das

funcionalidades, o desempenho e a escalabilidade.

No RUP a avaliacio de qualidade é realizada, em todas as atividades, envolvendo
todos os participantes, usando objetivo, métricas e criférios, e ndo como uma

atividade 4 parte executada posteriormente por uma equipe separada.

Um estudo comparativo entre RUP e XP 11

3.4 - Fases e Iteracoes

A organizagdo dindmica do Processo Unificado Rational estd dividida em fases ¢

iteragdes ao longo do tempo.

O ciclo de vida do software esta dividido em ciclos, cada ciclo evolui para uma nova
versio do produto. O RUP divide um ciclo de desenvolvimento em quatro fases
sucessivas;

J Concepgio

. Elaboragio

. Construgdo

. Transigdo

Cada fase é concluida quando um marco bem definido no qual decisdes criticas €

metas fundamentais devem ter sido alcangadas.

Os maiores marcos do projeto estdo ao final de cada fase, ou seja, ao final da fase de

concepgdo, Elaboragfio, Construcfo e Transi¢@o conforme a Figura 2 [3].

Maiores Marcos

oy

Concepglio | Elaboragho | Construgao| Transigéo |

Tempo >

Figura 2 — Maiores marcos do RUP.

3.4.1 - Concepgio

Durante a fase de Concepgio, estabelece-se o caso de uso de negocio para o sistema
e delimita-se o escopo do projeto. Para isto devem ser identificadas as entidades
externas que o sistema interagird (atores) e a natureza desta interagdo em um alto-

nivel. Isto envolve identificar os casos de uso.

Um estudo comparativo entre RUP ¢ XP 12

O caso de uso de negécio inclui critérios de sucesso, a avaliagdo de riscos, a
estimativa de recursos necessarios € um plano de gerenciamento da fase, mostrando a

previsdo dos principats marcos de progresso.

Durante a fase de Concep¢iio é comum a criagdo de um protétipo executavel,
servindo como teste para a Concepgdio. No final da fase de Concepgéo, os objetivos
do ciclo de vida do projeto devem ser examinados e decide se deve prosseguir para a

proxima fase.

Os resultado da fase de Concepgfio sdo [4]:
¢ Um documento de visdo: uma vis@o geral dos requisitos € da esséncia
do projeto, caracteristicas fundamentais, € principais restri¢des;
¢ Um modelo de caso de uso de 10% a 20% completo;
¢ Um glossario inicial do projeto;
e Um caso uso de negocio inicial que inclui contexto empresarial,
critérios de sucesso (projegdo de renda, mercado, reconhecimento, €
assim por diante), e previsfo financeira,
¢ Uma avaliagdo de risco inicial;
e Um plano de projeto, mostrando fases ¢ iteragdes;
» Um modelo de negbcio, se necessario; e

o Um ou varios prototipos.

Ao término da fase de Concepgdo estd o primeiro marco principal do projeto. Os
critérios de avaliagio para a fase de concepgio sdo:
e O consentimento dos Stakeholders na definigdo do escopo €
estimativas de custo e prazo;
e Requisitos entendidos e evidenciados com fidelidade nos casos de uso
Primarios;
e Credibilidade das estimativas de custo, prazo, prioridades, riscos, €
processo de desenvolvimento;
e Profundidade e amplitude de qualquer prototipo da arquitetura que

tenha sido desenvolvido; e

Um estudo comparativo entre RUP ¢ XP 13

+ Revisdo das despesas atuais contra despesas planejadas.

O projeto pode ser cancelado ou consideravelmente re-planejado se nio passar por

este marco.

3.4.2 - Elaboracao

As metas da fase de Elaboragio s3o a andlise do escopo do problema, o
estabelecimento de uma arquitetura bem definida, o desenvolvimento do plano do
projeto e a eliminagio dos elementos de mais alto risco do projeto. As decisdes de
arquitetura devem ser feitas com uma compreensio de todo o sistema. Isso significa
o entendimento do sistema intefro: seu escopo, funcionalidades principais e

requisitos ndo funcionais como requisitos de desempenho.

A fase de Elaboragio ¢ a mais critica das quatro fases. Ao término desta fase, grande
parte da engenharia ¢ considerada completa e deve ser decidido se ¢ iniciada ou ndo a
fase de Construgdo e Transi¢do. Para a maioria dos projetos, isto corresponde
também para a transi¢io de uma operagfo agil, de pouco risco para um alto-custo,
operagdio de alto risco com significativa inércia. Enquanto o processo sempre tiver
que acomodar mudangas, as atividades da fase de Elaboragfio asseguram que a
arquitetura, requisitos e planos sdo bastante estéveis, e os riscos sdo suficientemenie
minimizados. Assim, de maneira previsivel ¢ possivel determinar o custo ¢
programar a conclusdo do desenvolvimento. Conceitualmente, este nivel de
fidelidade corresponderia ao nivel necessario para uma organizagfo iniciar a fase de

Construgéo a um prego fixo.

Na fase de Elaboragio, um prototipo de arquitetura executidvel € construido em uma

ou mais iteragdes, dependendo do escopo, tamanho, risco, e novidade do projeto.

Este esforgo deveria atingir os casos de uso criticos identificados pelo menos na fase
de Concepgio que tipicamente expBe os riscos técnicos principais do projeto.
Enquanto um protdtipo evolutivo de um componente de qualidade sempre € a meta,

isto ndo exclui o desenvolvimento de um ou mais protdtipos para minimizar riscos

Um estudo comparativo entre RUP ¢ XP 14

especificos como mudangas de projeto e requisitos, estudo de viabilidade de

componente, ou demonstracdes para investidores, clientes, e usuarios.

O resultado da fase de Elaboragéo é:

Um modelo de caso de uso (com pelo menos 80% definido) onde

todos casos de uso e os atores foram identificados, e a maioria do casos de

uso foram descritos;

Requisitos adicionais que capturam requisitos ndo funcionais ¢ alguns

requisitos que ndo estdo associados com caso de uso especifico

levantados e documentados;

Uma descri¢do da arquitetura de software;
Um prototipo arquiteténico executavel;
Uma lista de risco revisada e um caso de negocio revisado;

Um plano de desenvolvimento para o projeto global, inclusive o plano

de projeto, que mostra as iteragdes e critérios de avaliagio para cada uma;

Um caso de desenvolvimento atualizado que especifica o processo a

ser usado; e

Um manual preliminar do usudrio (opcional).

O término da fase de Elaboragfo € o segundo marco importante do projeto. Neste

momento, sdo examinados os objetivos detalhados e o escopo do sistema, a escolha

de arquitetura e a resolugfio dos riscos.

Os critérios de avaliacio para a fase de Elaboracio envolvem as questdes:

A visdo do produto € estavel?
A arquitetura ¢ estavel?

O protdtipo mostra que os principais elementos de risco foram

solucionados?

O plano de gerenciamento para a fase de construgio estd

suficientemente detalhado e preciso? E apoiado com base em estimativas?

Um estudo comparativo entre RUP ¢ XP 15

o Todos os stakeholders concordam que a visfo atual pode ser
alcancada se o plano atual for executado para desenvolver o sistema
completo, no contexto da arquitetura atual?

e As despesas e 0s recursos atuais estio de acordo com as despesas

planejadas?

O projeto pode ser abortado ou consideravelmente re-planejado se nfo passar por

este marco.

3.4.3 - Construgio

Durante a fase de Construgdo, é desenvolvido de maneira iterativa e incremental, um
produto completo e todas as suas caracteristicas sdo testadas completamente. A fase
de Construcfio é um processo industrial onde ¢ dado énfase em administrar recursos ¢

controlar operacdes para aperfeicoar custos, prazos € qualidade.

Muitos projetos sdo grandes o bastante e podem ser gerados incrementos de
construgdo paralelos. Estas atividades paralelas podem apressar significativamente as
liberagdes; eles também podem aumentar a complexidade da administragdo dos
recursos € sincronizagdo de fluxo de trabalho. Uma arquitetura robusta € um plano

compreensivel s3o altamente correlatos.

Em outras palavras, uma das qualidades criticas da arquitetura é sua facilidade de
construcdo. Esta & a razdo por que ¢ dado énfase ao desenvolvimento da arquitetura e
o plano durante a fase de Elaboragfo. O resultado da fase de Construgiio ¢ um
produto pronto para o usuario final. O conjunto minimo, desta fase consiste em:

e O produto de software interage corretamente nas plataformas

adequadas;

e s manuais de usudrio descritos; €

e Uma descri¢io da liberagdo atual.

O término da fase de Construgdio & o terceiro marco principal do projeto. Neste

momento, é decidido se o software, a infra-estrutura, e os usudrios estdo prontos para

Um estudo comparativo entre RUP e XP 16

se tornar operacionais, sem expor o projeto a altos riscos. Esta liberagio € chamada

freqilentemente de versdo beta.

Os critérios de avalia¢3o para a fase de construgdo envolvem as questdes:
e O produto liberado ¢ estavel ¢ maduro o bastante para ser instalado na
comunidade usudria?
e Todos os stakeholders estio prontos para a transi¢io na comunidade
usuaria?
o As despesas e 0s recursos atuais estio de acordo com as despesas

planejadas?
A fase de Transigdo pode ter que ser adiada se o projeto nio alcangar este marco.

3.4.4 - Transicao

O proposito desta fase é a transicio do produto de sofiware para a comunidade
usuaria. Uma vez que o produto tenha sido dado ao usudrio, assuntos novos
normalmente surgem e requerem algum desenvolvimento adicional, com a finalidade
de ajustar o sistema, corrigir alguns problemas identificados, ou terminando as

caracteristicas que foram adiadas.

A fase de Transi¢Zo ¢ iniciada quando uma versdo beta for madura o bastante para
ser utilizada no dominio do usuario. Isto requer tipicamente que algum subconjunto
utilizavel do sistema esteja completo, a um nivel aceitivel de qualidade e a
documentacio de usudrio esteja disponivel de forma que a transicdo proverd

resultados positivos para todas as partes.

Esta fase inclui:
¢ Teste beta, valida o sistema novo contra as expectativas dos usuarios;
e Operagio paralela com um sistema legado que esta sendo substituido;
s Conversiio de bancos de dados operacionais;

¢ Treinamento de usuarios;e

Um estudo comparativo entre RUP e XP 17

e Implantagdio do produto para o marketing, distribuicdo e equipes de

vendas.

A fase de Transicdo focaliza nas atividades exigidas para colocar o software nas
maos dos usudrios. Tipicamente, esta fase inclui varias iteragdes, com liberagSes de
versdo beta, como também liberagio de corregdo de versdes com problema. E gasto
um esfor¢o consideravel desenvolvendo documentacio orientada a usuario, treinando
0s usuarios, apoiando o uso inicial do produto pelos usudrios. Porém, neste momento
no ciclo de vida a avaliagdo dos usuarios deveria ser principalmente limitada a

ajustar o produto, quanto a configuragio, instalac3o, e usabilidade da versdo.

Os objetivos primarios da fase de Transi¢8o incluem:
. Oferecer suporte adequado aos usuarios; e
. Conseguir o consentimento dos stakeholders que o produto
desenvolvido esta completo e consistente com os critérios de

validagéo estabelecidos.

Dependendo da complexidade do produto esta fase também pode ser simples ou
complexa. O término da fase de Transicio é o quarto marco mais importante do

projeto, o marco de liberagdo do produto.

Neste momento é decidido se os objetivos foram alcangados, e se deve ser iniciado
outro ciclo de desenvolvimento. Em alguns casos, este marco pode coincidir com o

fim da fase de Concepgéo do proéximo ciclo.

Os critérios de avaliagfio primarios para a fase de Transigdo envolvem as envolvem
as questdes:

e 0 usudrio esta satisfeito?

e As despesas e os recursos atuais estdo de acordo com as despesas

planejadas?

Um estudo comparativo entre RUP e XP 18

3.4.5 - Iteracdes

Cada fase do RUP ainda pode ser dividida em iteragdes. Uma iteraglio € um ciclo
completo de desenvolvimento, resultando em uma verséieo de um produto executdvel
que constitui um subconjunto do produto final em desenvolvimento. Esta versdo
pode ser interna, isto €, nfio ¢ liberada para o usuario final ou externa neste caso ¢
liberada para o usudrio final Esta versdio cresce de modo incremental de uma
iteragdo para outra até se tornar o sistema final. Cada iteragio passa pelos varios
fluxos de trabalho do processo, embora com uma énfase diferente em cada um deles,

dependendo da fase.

Durante a fase de Concepgdo, o foco estd na captagfo de requisitos. Durante a
Elaboracio o foco passa a ser a analise e o projeto. A implementagdo ¢ a atividade

central na Construgdo e a entrega ¢ o foco da Transigéo.

3.4.6 - Beneficios de um processo iterativo

Comparado ao processo tradicional cascata, o processo iterativo tem as seguintes

vantagens:
. Os riscos sdo minimizados mais cedo;
. As mudangas s&o mais faceis;
. Existe um nivel mais alto de reutilizacgio;
. A equipe do projeto pode aprender ao longo do caminho; e

o Melhor qualidade global..

3.5 - Estrutura estatica do processo
Todo processo deve responder a pergunta: Quem esta fazendo o que, quando e

como? O RUP representa isto usando 4 elementos primarios (Figura 3) :

. Papéis: “quem”
. Atividades: “como”
o Artefatos; “o que”

) Fluxo de trabalho: “quando”

Um estudo comparativo entre RUP ¢ XP 19

Fapel Arnvidades
Artefato P rojetista Ardlise dos Dessnho dos
o casns de ugo casos de uso
q.\“ ' respousavel por
,-v""'“'x-""‘"‘-.
i “Caso de uso
T 3

Figura 3 - Estrutura estatica do RUP.

3.5.1 - Papéis

Um papel define o comportamento € as responsabilidades de um individuo, ou um
grupo que trabalha como uma equipe. Um individuo pode desempenhar mais que um
papel. As responsabilidades atribuidas a um papel incluem tanto a execugdo de um

conjunto de atividades como a titularidade de certos artefatos.

Recursa s
Papéis L Atividades
Paulo *Projetista Projero de objetos
Kiarix Autor de caso de uso Drescrever um caso de uso
Joio sy Frojeiistd de caso & use Descrever compontamento

Silvia Revisor de Proyeto Rever o modelo de gasos de uso

Daniel Arguiteto Andlise da arquitetura
aniel " Anilise do projeto

Pessoas ¢ papéis

Figura 4 — Papéis no RUP.

3.5.2 - Atividades

Uma atividade ¢ uma unidade de trabalho que pode ser solicitada a um individuo
num dado papel Tem um objetivo claro, geralmente expresso em termos de
produgdo ou atualizagdo de um artefato (modelo, classe, plano...). Todas as
atividades sfio atribuidas a um papel especifico. A granularidade pode ser de horas a

dias, normalmente envolve um papel e afeta um artefato ou um conjunto reduzido

deles.

Um estudo comparativo entre RUP e XP 20

Deve ser utilizdvel como eclemento de planejamento e aferigdo de progresso.
Exemplos de atividades:

e Planejar uma iterago (papel: gestor do projeto);

o Identificar casos uso e atores (papel analista);

e Rever o projeto (papel: revisor de projeto); €

o [Executar testes de desempenho (papel: testador).

3.5.3 - Artefatos
E o elemento (de informagdio) produzido, modificado ou utilizado por um processo.
Sio os elementos tangiveis de um projeto (aquilo que séo produzidos ou utilizados ao
trabalhar para o objetivo). Sdo utilizados como entrada pelos individuos (papéis) para
desempenhar uma atividade e s3o o resultado ou safda de tais atividades. Exemplos:

e Um modelo de casos de uso;

» Um elemento de um modelo — uma classe;

e Um documento —caso de negdcio ou arquitetura do software;

o (Codigo fonte; e

o (Codigos executaveis (binarios).

3.5.4 - Fluxo de trabaiho
Os papéis, atividades e artefatos nfio constituem um processo totalmente. E preciso
um modo para descrever seqincias significantes de atividades que produzem algum

resultado, e mostrar interagdes entre os papeis.

Um fluxo de trabalho é uma seqiiéncia de atividades que produzem um resultado de
valor observavel. Em UML, um fluxo de trabalho pode ser expresso como um

diagrama de segiiéncia, um diagrama de colaborago ou um diagrama de atividade.

Nem sempre & possivel ou pratico representar todas dependéncias entre atividades.
Freqiientemente duas atividades sdo entrelagadas mais firmemente, especialmente
guando envolvem o mesmo trabalhador ou o mesmo papel. As pessoas ndo sdo
maquinas, € o fluxo de trabalho ndo pode ser interpretado literalmente como um

programa para as pessoas seguirem mecanicamente.

Um estudo comparativo entre RUP e XP 21

3.6 — Divisdo do fluxo de trabatho no RUP

Ha nove fluxos de trabalho descritos no RUP eles representam a divisdo de

atividades entre os individuos (papéis) agrupados logicamente[4].

O fluxo de trabalho do processo ¢ dividido em seis fluxos de trabalho de engenharia:
1. Modelagem de negocio

2. Requisitos

3. Anélise e projeto

4. Implementacfo

5. Teste

6. Entrega

E trés fluxos de trabalho de suporte
1. Gerenciamento do projeto

2. Gerenciamento de configuracio
3. Ambiente

Embora os nomes dos seis fluxos de trabalho de engenharia possam parecer as fases
de um processo cascata tradicional, as fases do processo iterativo séo diferentes € que
estes fluxos de trabalho sdo executados repetidas vezes ao longo do ciclo de vida. O
fluxo de trabalho completo atual de um projeto intercala estes nove fluxos, € os

repete com varias énfases e intensidades a cada iteragéo.

3.6.1 - Modelagem de negdcio

Um dos problemas principais com a modelagem de negdcio, € que a comunidade que
desenvolve o software e a comunidade que cria o negécio ndo se comunicam
corretamente.. O RUP tenta minimizar isto provendo um idioma comum ¢ processos
para ambas as comunidades, como também mostrando como criar ¢ manter a

rastreabilidade direta entre negdcio e modelos de software.

Um estudo comparativo entre RUP e XP 22

Na modelagem de negocio documentam-se processos empresariais chamados casos
de uso de negoécio. Isto assegura um entendimento comum entre todo os stakeholders

do processo de negocio precisa ser suportado na organizagfo.

Os casos de uso de negdcio sdo analisados para entender como a empresa deveria
suportar os processos de negocio. A modelagem de negécio consiste em duas partes
principais: um modelo caso de uso empresarial ¢ um modelo de objetos empresarial,
ambos podem ser criados utilizando a UML. O modelo de caso de uso empresarial
descreve os processos empresariais ¢ sdo documentados como uma sucesséo de agdes
que provéem valor a um ator empresarial. O modelo de objetos empresarial mostra
como o modelo de caso de uso de negocio sera realizado. Ele serve como uma
abstragdo de como os atores e entidades de negdcio precisam se relacionar e
colaborar para executar o negocio. Muitos projetos podem escolher ndo fazer esta
modelagem do negocio caso o produto a ser gerado ndo esteja fortemente embutido

dentro de algum processo empresarial. [14]

2.6.2 - Requisitos

A meta do fluxo de trabalho de requisitos € descrever o que o sistema deveria fazer ¢
permitir que desenvolvedores e clientes concordem com a descrigdo. Para alcangar
isto, extracm-se, organizam-se, ¢ documentam-se requisitos funcionais e restrigdes;
rastreiam-se mudangas de documentos e decisdes. Um documento de visdo € criado e
as necessidades dos stakeholder sio extraidas. S#o identificados os atores,
representando os usuirios, € qualquer outro sistema com o que o sistema que esta
sendo desenvolvido possa interagir. Sdo identificados casos de uso, representando o

comportamento do sistema.

Cada caso de uso € descrito em detalhes. A descricdo do caso de uso mostra como 0
sistema interage passo por passo com os atores € 0 que o sisterna faz. Sdo descritos
requisitos ndo funcionais em especificagdes adicionais. O mesmo caso de uso ¢é

usado durante a captura de requisitos, analise e projeto e teste.

Um estudo comparativo entre RUP ¢ XP 23

3.6.3 - Analise e projeto
A meta do fluxo de trabalho da anilise e projeto ¢ mostrar como o sistema sera
implementado. O sistema a ser construido necessita que:
o Execute em um ambiente especifico as tarefas e fungdes especificadas
nos casos de uso;
¢ Atenda todos os requisitos; e
e Seja estruturado para ser robusto (facil de mudar quando os requisitos

funcionais mudarem).

Da andlise ¢ projeto resulta em um modelo de projeto € um modelo de analise. O
modelo de analise consiste em um modelo de objetos que descreve a realizagio dos
casos de uso e serve como uma abstragio do modelo de projeto. Normalmente este
modelo de objetos evoluird diretamente nos elementos do modelo do projeto, sendo
que a meta do modelo de andlise ¢ fazer uma mapeamento preliminar do
comportamento exigido pelo sistema. A meta do modelo de projeto ¢ transformar
este modelo preliminar transformando em elementos que podem ser implementados.
Portanto, ha um refinamento de detalhes quando se passa do modelo de analise para
o modelo de projeto. Portanto o modelo de andlise passa por muitas alteragdes ¢ com
isto se torna opcional fazer um modelo de andlise ou ja se construir diretamente o
modelo de projeto. Existem alguns pontos que devem ser considerados para saber se
o modelo de analise pode ser opcional ou nio:

e O projeto é complexo, tal que ¢ necessario uma abstracdo para

apresentar 0 mesmo a todos os membros da equipe;

e O trabalho gasto para se manter o sincronismo entre o modelo de

anilise e o modelo de projeto esta justificando a necessidade de manter os

artefatos com diferentes niveis de abstracdo; e

e Em algumas organizagdes onde os sistemas te um longo tempo de

vida, ou onde ha muitas variantes do sistema, um modelo de analise pode

ser util.

O modelo de projeto serve como uma abstragdo do cédigo fonte, isto €, 0 modelo de

projeto descreve como o cédigo fonte € estruturado € escrito.

Um estudo comparativo entre RUP e XP 24

O modelo de projeto consiste em classes de projeto estruturadas em pacotes de
projeto e subsistema com interfaces bem definidas, representando o que se tornardo
componentes na implementagdo. Também contém descrigdes de como estas classes

de projeto colaboram para executar os casos de uso.

As atividades de andlise e projeto sfo centradas na arquitetwra. A produgdo ¢
validag@o desta arquitetura € o foco principal das iteragdes desta fase. A arquitetura €
representada por varias visdes {6]. Estas visdes capturam as principais decisfes de

projeto da estrutura.

Em esséncia, visdes de arquitetura sdo abstra¢Ses ou simplificagdes do projeto inteiro
no qual caracteristicas importantes sdo criadas deixando detalhes a parte. A
arquitetura ndo sé € um veiculo importante para desenvolver um bom modelo de
projeto mas também para aumentar a qualidade de qualquer modelo construido

durante o desenvolvimento do sistema.

3.6.4 - Implementa¢io

O propésito do fluxo de trabalho de implementagdo ¢:
e Definir a organizagio do coédigo, em termos de subsistemas de
implementagio organizados em camadas;
e Implementar classes e objetos em termos de componentes (arquivos
fonte, binarios, executaveis, e outros);
o Testar os componentes desenvolvidos unitariamente; e
e Integrar os resultados produzidos por desenvolvedores individuais (ou

equipes) em um sistema executavel.

O sistema ¢ realizado pela implementagdo de componentes. O RUP descreve como
reusar componentes existentes, ou implementar componentes novos Com
responsabilidade bem definida, tormando o sistema mais facil de manter, e

aumentando as possibilidades de reuso.

Um estudo comparativo entre RUP e XP 25

3.6.5 - Teste

Os propodsitos do fluxo de trabalho de teste séo:
e Verificar a interagfo entre objetos;
¢ Verificar a propria integragio de todos os componentes do software;
¢ Verificar se todos os requisitos foram implementados corretamente; e

¢ Identificar os defeitos antes da implantagfo do software.

O RUP propie que os testes sejam executados de forma iterativa ao longo do projeto.
Isto lhe permite achar defeitos mais rapidamente, e reduz drasticamente o custo de
corrigit o defeito. Sdo feitos testes ao longo de trés dimensdes de qualidade
confiabilidade, funcionalidade, desempenho da aplicagfio ¢ desempenho de sistema.
Para cada uma destas dimensdes de qualidade, o processo descreve como se passa

ciclo de teste: planejar, projetar, implementar, executar e avaliar.

S#o descritas estratégias de quando e como automatizar o teste. A automatizagio de
teste é importante, permitindo testes de regressdo ao fim de cada iteragdo, como

também para cada versdo nova do produto.

3.6.6 - Entrega
O proposito do fluxo de trabalho de entrega ¢ de distribuir o produto gerado para

seus usuarios. Inclui uma gama extensiva de atividades:

. Produzir liberagdes externas do software;
. Empacotar o software;

. Distribuir o software;

. Instalar o software; e

. Providenciar apoio para os usuarios.

Em muitos casos, isto também inclui atividades como:
. Planejar e administrar de testes iniciais;
. Migrar os dados existentes; &

. Obter o aceite formal.

Um estudo comparativo entre RUP ¢ XP 26

Embora atividades de entrega sejam principalmente centradas na fase de Transigéo,
muitas das atividades sfo incluidas em fases anteriores para preparar a entrega ao

término da fase de construgdo.

3.6.7 - Gerenciamento do projeto
Gerenciamento do projeto de software ¢ a arte de equilibrar objetivos, gerenciando o
risco e superando limitagBes para entregar um produto no qual se conhece as
necessidades de clientes ¢ usudrios. E fato que muitos projetos fracassam pela
dificuldade desta tarefa. Este fluxo de trabalho se atenta principalmente no aspecto
especifico de um processo de desenvolvimento iterativo. A meta ¢ tomar a tarefa
mais facil provendo:

. Uma estrutura para administrar projetos de software;

. Um guia pratico para planejar, executar ¢ monitorar projetos; e

. Uma estrutura para administrar risco.

N#o ha garantias de sucesso mas apresenta uma forma de administrar o projeto que

melhorara as chances entregar software com sucesso.

3.6.8 - Gerenciamento de configuracio
Neste fluxo de trabalho é descrito como controlar os numerosos artefatos produzidos
pelas pessoas (papéis) que trabalham no projeto. Este controle assegura que 0s
artefatos resultantes das iteragdes nfio estio em conflito devido a alguns dos
seguintes problemas:
. Atualizacdo Simultinea. Quando duas ou mais pessoas
trabalham separadamente no mesmo artefato, a Gltima pode fazer uma
mudanga e destruir o trabalho anterior.
° Notificagdo. Quando um problema ¢ corrigido em artefatos
compartilhados por varias pessoas, elas podem ndo ser notificadas da
mudanga.
o Versdes Miultiplas. A maioria dos programas grandes €
desenvolvido em versGes evolutivas. Uma versdo poderia estar em uso

pelo de cliente, enquanto outra esti em teste, ¢ outra ainda estd em

Um estudo comparativo entre RUP e XP 27

desenvolvimento. Se forem achados problemas em qualquer uma das
versdes, as corregdes precisam ser propagadas entre eles. Por isto €
necessario controlar € monitorar cuidadosamente estas mudangas para

que elas possam ser propagadas quando necessario.

Este fluxo de trabalho prové diretrizes para administrar variantes multiplas do
sistemas de software que estd evoluindo, localizando que versdes sdo usadas em
determinadas construgdes do software, executando a distribuicio de programas
individuais ou liberagdes inteiras de acordo com especificagfes de versdo definidas

pelo usudrio, e obrigando politicas de desenvolvimento especificas.

E descrito como pode ser administrado o desenvolvimento paralelo, desenvolvimento
feito em locais miltiplos, € como automatizar o processo de construgfio. Isto é
importante em um processo iterativo onde pode ser necessdrio gerar versoes

diariamente, algo que ficaria impossivel sem automatizagéo.

E descrito como manter um controle das altera¢es indicando o motivo da alteragdo,
quando e por quem foi alterado qualquer artefato. Este fluxo de trabalho tambeém
abrange a administragdo de pedido de mudanga, por exemplo, como informar
defettos, administrar o seu ciclo de vida, e como usar dados de defeito para localizar

progresso ¢ tendéncias.

3.6.9 - Ambiente
O proposito do fluxo de trabalho de ambiente € proporcionar para a organizagfo de
desenvolvimento de software o ambiente para o desenvolvimento, processos €

ferramentas sfo necessarios para apoiar o time de desenvolvimento.

Este fluxo de trabalho se concentra nas atividades para configurar o processo no
contexto do projeto. Também em atividades para desenvolver as diretrizes
necessarias para apoiar o projeto. Descreve um procedimento passo a passo de como

implementar o processo em uma organizagéo.

Um estudo comparativo entre RUP € XP 28

O fluxo de trabalho de ambiente também contém um guia de desenvolvimento que
proporciona as diretrizes, modelos e ferramentas necessarias para personalizar o
processo. Certos aspectos do fluxo de trabalho de ambiente ndo estdo cobertos no
processo como selecionar, adquirir, criar as ferramentas de trabalho e manter o

ambiente de desenvolvimento.

Um estudo comparativo entre RUP e XP 29

4 - EXTREME PROGRAMMING

4.1 - Introducio ao Extreme Programming

Um dos principais problemas relacionados ao desenvolvimento de software sdo
TiScOs como: atrasos no cronograma, projetos cancelados devido a esses atrasos,
sistemas tornando-se obsoletos, alta taxa de defeitos, mudangas de requisitos ¢ saida
de importantes membros da equipe de desenvolvimento sio exemplos de risco que

podem resultar no fracasso de um projeto de software [7].

Extreme Programming (XP), é um processo de desenvolvimento de sofiware que
visa alcancar duas metas almejadas pelas organizagbes de desenvolvimento de
software:

e Desenvolvimento rapido e consistente com as reais necessidades do

cliente; e

e TFacil manuten¢dio, permitindo que o software seja modificado &

medida que as necessidades do negdcio se alteram ou ampliam.

Extreme programming ¢ um conjunto bem definido de regras que vem conquistando
um grande nimero de adeptos, particularmente entre os programadores de tecnologia
orientada a objeto, em especial os desenvolvedores Java [8]. Podendo ser aplicado a

projetos com altos riscos e requisitos dindmicos.

Comunicagdo, Simplicidade, Realimenta¢dio e Coragem s@io os quatro lemas adotados
pelos seguidores de XP, que correspondem a quatro dimensées nas quais os projetos
podem ser melhorados. XP oferece condigdes para que os desenvolvedores possam
responder confiavelmente a alteragdes de requisitos propostas pelos clientes, mesmo

em estagios finais do ciclo de vida do projeto.

Entretanto, XP ndo se aplica bem a todo e qualquer tipo de projeto e como todo
processo, possui algumas restri¢des. Para que sua aplicagdo seja produtiva s&o

necessarias algumas caracteristicas, entre elas:

Um estudo comparativo entre RUP e XP 30

o Grupos Pequenos: XP supde que as equipes de desenvolvimento de
um projeto possuem de 2 a 10 programadores;
o Trabalho em equipe: XP expande a equipe de desenvolvimento

incluindo forte integracdo entre gerentes e clientes durante todo o processo de

desenvolvimento;

. Testabilidade: E importante poder criar testes funcionais e unitarios
automatizados;

. Produtividade: E necessaria uma equipe de desenvolvimento

comprometida e dinfimica para assegurar um alto grau de produtividade, que
¢ indispensavel na realizagéio dos projetos XP; e

. Agilidade na comunicagdo com o cliente: A metodologia de
desenvolvimento enfoca a rapidez da implementagio e, desta forma, a
comunica¢do com o cliente deve ser agil E preciso que o cliente seja
especialmente dedicado ao projeto ¢ possa tomar decisdes rdpidas para

garantir o cronograma do projeto.

Desta forma, XP requer uma mudanga cultural, o que nem sempre ¢ facil alcangar.
Além disso, alguns obsticulos & sua implementagfio podem surgir como: gerentes ou
clientes que insistem em ter um conjunto completo de especificagSes ou um projeto
detalhado antes da fase de codificagdo, ou ainda, sistemas com uma grande
quantidade de aplicagdes ja existentes e dificeis de serem alteradas ndo oferecem
flexibilidade suficiente para garantir a simplicidade no cédigo, um dos requisitos de

XP.

4.2 - Ciclo de vida e as fases do processo XP
O ciclo de vida XP é uma das abordagens mais discutidas por diversos grupos que

adotam este processo. A figura 6 representa o ciclo de vida XP.

Um estudo comparativo entre RUP e XP

R

Arquitetura_
Spike

Exploracao

Estérias “

31

b uisit

(=]

0T

o

Moetsfora

de Sistema/

Incert

™

Planejarnento

T da entrega

Estimativas Estimativag

ag Confidveis

Spike

Planejamente
]

No
Ve

™ Teste
vas Estirias
locidade “,Defeitos [i
o2 ~) =)
50 iteragéo — Uitima o Testesde §§ —» Pequenas
o2 Versio Aceftagio EO Versies

5 Proxima = <3

lteragéo
iteragdes Pré-Produgdo

Manutencao

Figura 6 — Ciclo de vida do XP.

O ciclo de vida XP é bastante curto e, 4 primeira vista, difere dos padrdes dos

modelos de processo convencionais. No entanto, esta abordagem pode fazer sentido

em um ambiente onde as mudangas de requisitos do sistema sdo fatores dominantes.

Na fase de planejamento os requisitos do cliente sfio cuidadosamente coletados a

medida que sio fomecidos. A seguir, os testes sdo elaborados a partir das

especificagdes do cliente, ¢ a fase de codificagdo ¢ realizada visando atender esses

testes.

Existe uma relagio préxima e continua entre as fases de teste e codificagdo. E, por

fim, o sistema é novamente projetado (ou reconstruido) a medida que novas

funcionalidades sdo incorporadas.

A seguir descrevem-se as fases [7).

4.2.1 - Exploracio

A Exploragdio ¢ uma fase inicial onde o projeto ainda nfio esta em produgdo. Nesta

fase é necessario que os membros da equipe tenham se certificado que possuem as

ferramentas corretas ¢ que possuem (ou conseguem aprender) as habilidades

necessarias para iniciar o projeto.

Um estudo comparativo entre RUP ¢ XP 32

Durante a fase de Explora¢do os programadores fazem testes para estabelecer a
arquitetura do sistema. Eles exploram as possibilidades testando varios tipos de
arquitetura possiveis. Se possivel deve-se simular cargas realistas para validar as
arquiteturas criadas. Esta exploragdo arquitetdnica € muito importante quando o
usuario solicitar a implementacdo de estérias que a equipe ndo sabe como
implementar. Enquanto a equipe estiver criando e testando a arquitetura o cliente

escreve as estorias.

A fase de Exploragio é terminada quando o cliente estd confiante que as estdrias
foram suficientemente levantadas e os programadores estio confiantes que podem

estimar o que deve ser implementado.

4,2.2 - Planejamento

O propésito da fase de Planejamento € que os clientes e os membros da equipe
entrem em acordo em qual data e qual o conjunto mais importante de estorias sera
entregue na primeira versdo. A forma como isto ¢ feito serd abordada no item

atividade de plangjamento.

4.2.3 - Iteracdes
Nesta fase o compromisso acordado na fase anterior é dividido em iteragdes de
quatro semanas. Cada iteragdo produzird um conjunto de casos de teste funcionais

para as estdrias que serdo realizadas.

A primeira iteragdo criard a arquitetura e para esta iteragio devem ser escolhidas as
estorias que forgam a criar o sistema inteiro mesmo que em forma de esqueleto. Para

as Iteragdes subseqientes o cliente deve indicar as estorias mais importantes.

Idealmente, ao término de cada iteragdio o cliente tera executado os testes funcionais

e validado a versdo.

Um estudo comparativo entre RUP e XP 33

4.2.4 - Producio

O término de wma versdo aumenta o ciclo de avaliagio e as iteragdes passam a ser de
uma semana. Tipicamente havera algum processo para certificar que o software esta
pronto para entrar em produ¢do. Neste momento sera verificado se é necessario

ajustar o desempenho do sistema.

Durante esta fase, sera reduzida a velocidade de evolugdo do sistema. Isto nfio indica
que ele nfio evoluird mas a avaliagdo se uma mudanga pode ser feita ou ndo devera
ser feita com mais cautela.

Esta fase termina quando o sistema esta pronto para entrar em produgo.

4.2.5 - Manutengiio
Manutengdo é o estado normal de um projeto XP. Nesta fase deve-se produzir novas
funcionalidades, manter o sistema existentes e alterar a equipe caso necessario.

Portanto as fases Planejamento Iteragdo e Produgdo sdo revisitadas.

Toda entrega de uma versfo comega com a fase de exploragdo. Onde podera ser
feitos grandes reestruturagdes e reconstrugdes no sistema, testar novas tecnologias ou

testar novas idéias arquitetonicas.

Desenvolver um sistema que esta em produgdo ndo ¢ igual a desenvolver um sistema
que ndo estd ainda em produgdo. Deve-se ter mais cuidado ao executar as mudangas.
Deve estar preparado para parar o desenvolvimento novo € atender um problema da

versdo que estd em produgao.

E provéavel que estando em produgdio a velocidade de desenvolvimento mude e as

novas estimativas sejam mais conservadoras.

4.3 - Atividades
Durante o ciclo de vida de um projeto XP sdo aplicadas as 4 atividades:

Planejamento, Teste, Codificagio e Projeto em cada atividade sdo executadas

algumas tarefas que serdo detalhadas a seguir[7].

Um estudo comparativo entre RUP e XP 34

4.3.1 — Planejamento

Planejamento consiste em estimar diversos fatores que podem afetar o
desenvolvimento do software. Algumas das tarefas do planejamento incluem: decidir
escopo e prioridade do projeto, estimar custos ¢ cronogramas e criagdo de um plano
para a entrega de uma nova versdo do produto. Uma diferenca, entre o XP ¢ a
maioria dos modelos de processo convencionais, ¢ que XP n#o define a especificagdo

formal e completa de requisitos.

Estorias de usuario

“Estorias de usudrio” [10] sdo semelhantes a casos de uso ¢ tém a finalidade de
auxiliar a elaboragfio de estimativas de tempo para o planejamento do software a ser
entregue. Também podem ser uma alternativa para declaragdes de requisitos formais.
Estdrias de usuario s&o escritas pelos usudrios, utilizando uma linguagem natural, ao
invés de um vocabulario técnico, para especificar as tarefas que o sistema precisa
realizar. Trata-se de um processo semelhante a cendrios de caso uso, mas nio se
limita a descrever a interface do programa. As estorias sempre focam a necessidade
do usudrio e, por serem escritas em uma linguagem natural, permitem a compreensdo

independentemente de uma tecnologia especifica, projeto de dados ou algoritmo.

As estérias de usudrio sdo também utilizadas para a criagdo de testes de aceitagio
que verificam se o requisito foi corretamente implementado. A {nica diferencga entre
as estérias de usuario ¢ o documento de requisitos é que o ultimo apresenta maior
grau de detalhe. As estérias de usudrio devem possuir detalhes suficientes para
estimar, com baixo risco, quanto tempo levard a implementagio. Na atividade de
implementagdo durante a fase de Iteragdo os requisitos serdo mais bem explicitados

através da interagiio dos desenvolvedores com os clientes.

Para cada estérias de usudrio, a equipe de desenvolvedores estima inicialmente qual
seria o tempo ideal para o desenvolvimento. O tempo ideal € o tempo necessario para
codificar a estéria supondo que nfo existam outras tarefas a serem feitas e os

desenvolvedores saibam exatamente como codificar o problema.

Um estudo comparativo entre RUP e XP 35

Se o tempo ideal resultante for menor que uma semana essa estoria ¢ considerada
como um detalhe, ¢ deve ser combinada & outra estoria de escopo mais amplo. Se o
tempo ideal for maior do que trés semanas, deve-se analisar a possibilidade de
subdividir a estéria em tarefas mais especificas. Um plano para a entrega de um

produto deve conter entre 60 e 100 estérias.
A tarefa de levantamento das estorias de usudrio ¢ mais executada na fase de
Exploragdo e depois revisitada durante a fase de Iteragdo e sempre que uma nova

alteracdo do sistema ¢é necessaria [7].

Planejamento da entrega

A tarefa de planejamento da entrega ¢ executada na fase de planejamento. Esta
tarefa consiste em reunides para planejamento da enirega de uma nova versdo do
produto e define as caracteristicas gerais do software. O plano de entrega ¢ utilizado

para criar o planejamento das iteragdes de desenvolvimento das versdes do produto.

O processo de desenvolvimento XP ¢ incremental e a cada iteragiio do software um
conjunto de estérias ¢ implementado. Durante a reunidio para criagio do plano de
entrega do software, um conjunto de estorias semelhante ¢ agrupado e determina-se o
que sera feito em cada iteragdo do ciclo através da utilizagdo de cartSes com as
estorias identificadas. Estes cartdes sdo organizados em ordem de implementagdo
para as proximas versdes do software. O cronograma para a entrega de uma nova
versdo do software ¢ baseado no escopo das estorias definidas para a implementagio

no ciclo de iteragdo.

Os ciclos de desenvolvimento sdo curtos com entregas freqiientes de novas versdes
do software. O plano de entrega permite que as decisdes sejam tomadas de forma a
assegurar a viabilidade técnica ¢ comercial do projeto. As regras para a criagdo do
plano de entrega envolvem métodos de negociagdo de cronograma. que permitem o

comprometimento das 4reas comercial e técnica da empresa.

Um estudo comparativo entre RUP e XP 36

A Unica tarefa extra, além da codifica¢do existente no tempo 6timo de programacéo,
é a secdo de testes. Se as estimativas para implementacio das estdrias ndo agradarem
a geréncia ou a 4rea comercial, ao invés de subestimar o tempo de implementago,
deve-se diminuir o escopo das estorias que serfio entregues na proxima versdo do

software.

Pode-se definir a velocidade do projeto por tempo ou por escopo. A estimativa por
tempo considera o nimero de estérias que podem ser implementadas em um dado
periodo, enquanto a estimativa por escopo analisa o tempo necessario para
implementagdo de um dado conjunto de estérias. Ambas as formas de estimativa
consideram os recursos humanos disponiveis que podem ser alocados de acordo com

as restrigdes de tempo e escopo da versio.

A geréncia ou area comercial da empresa pode definir apenas 2 das 3 variaveis de
projeto: tempo, escopo € recursos humanos. A variavel restante sempre sera ditada

pela equipe de desenvolvimento de forma a viabilizar a entrega da proxima versao.

Métricas

Duas formas para estimar e medir o progresso de um projeto sdo o Fator de Carga e
Velocidade do projeto. A velocidade do projeto é utilizada para monitorar e estimar
um projeto individual. Contudo a velocidade ndo € proveitosa para comparar novos
projetos ou novas estimativas. Alem disso, a velocidade trabalha melhor quando a
equipe de desenvolvimento é estavel e o tempo de desenvolvimento nas iteragdes a0
constantes. A média do Fator de Carga de muitos projetos sdo mais (teis para um

plano inicial do projeto e para projetos pouco estaveis.

O Fator de carga ¢ calculado pela diferenca entre o tempo ideal estimado e o tempo
decorrido dividido pela estimativa ideal. Multiplica-se a estimativa pela média do
fator de carga para estimar o tempo atual de desenvolvimento. O fator de carga
varia consideravelmente entre as pessoas, projetos ¢ ambientes de desenvolvimento

devido ao numero de perturbagdes do ambiente, como por exemplo reunioes € outros

Um estudo comparativo entre RUP e XP 37

fatores. Tipicamente o fator de carga tende a ser uma faixa entre dois € meio a trés
semanas do real esforgo para cada semana estimada ideal. Assim sendo:

¢ Fator de carga = (tempo real estimado—gasto)/tempo Ideal Estimado

e Ajuste de tempo Estimado = Tempo Ideal Estimado * Média(Fator

Carga)

A Velocidade do projeto é uma forma de medir o ritmo do projeto com base no
namero de estorias ou tarefas completadas pelo total estimado. A velocidade ¢ usada
para prever durante o planejamento de uma nova verso se 0 €sCOpo se ajusta ao
tempo alocado.

Velocidade = Namero de estorias desenvolvidas/ Total Estimado

As métrica sdo utilizadas durante a fase de Planejamento para auxiliar o
planejamento da entrega e durante a Iteragfio para o acompanhamento da velocidade

do projeto.

Planejamento das iteragdes de desenvolvimento
Esta tarefa ¢ realizada durante o inicio da fase de Iteragfo e consiste em reunides de

planejamento. Nessa reunifio, sdo selecionadas as estorias mais importantes
(definidas pelo cliente) para a versdo, além dos testes de aceitagfo que apresentaram

problemas no ciclo anterior.

As estorias sio divididas em tarefas de programagdo que devem ter tempo ideal de
codificacio de 1 a 3 dias. Tarefas menores que 1 dia podem ser agrupadas e maiores
que 3 dias podem ser quebradas. O fator de velocidade do projeto ¢ utilizado para
verificar se a quantidade de tarefas condiz com o tempo estimado para aquela
iteracdo. Caso se detecte uma sobrecarga na quantidade de tarefas, o cliente ¢
contatado para defini¢io das tarefas que serdo adiadas para a proxima iteragfo. Da
mesma forma, caso se detecte superdimensionamento do tempo, novas estorias

podem ser aceitas para o ciclo de iteragdo.

Reuntdes rapidas

Um estudo comparativo entre RUP ¢ XP 38

As reunides semanais de toda a equipe de desenvolvimento para discussdes gerais
sobre o projeto geralmente sdo consideradas uma tarefa complexa que consome
muito tempo e muitas vezes se mostra improdutiva. Uma alternativa proposta por XP
sd0 as reunides rapidas. Estas sdo realizadas todos os dias, em um dado horario, para

discutir problemas e solugdes, além de orientar a equipe para o que deve ser feito.

Essa abordagem evita a complexidade de estabelecer um horario durante um dia da

semana no qual toda a equipe de desenvolvimento possa comparecer.

Essas reunides rapidas de verificagio da situagdo do projeto contribuem para o
conhecimento geral do projeto por todos os membros da equipe. Problemas
especificos podem ser discutidos em reunifes separadas, onde comparegam apenas as
pessoas envolvidas com o problema em questfio. Tais reunides podem ter carater
pratico e informal com o lider de projeto e alguns desenvolvedores, revisando certo
codigo em frente a um computador ou projetando solugdes em papel ou em uma

lousa.

Estas reunibes sio executadas em todas as fases do projeto. Porém sdo mais

utilizadas nas fases de Planejamento, lteragiio ¢ Manutengéo.

4.3.2 - Teste

Um dos requisitos basicos de XP, ¢ o de escrever testes antes do codigo. Os testes em
XP sdo divididos em duas categorias: testes unitarios e testes de aceitagdo (também
chamados de testes funcionais) [11]. Testes unitdrios sdo, em geral, escritos pelos
desenvolvedores e tém a finalidade de testar uma classe individual ou um pequeno
grupo de classes. Ja os testes de aceitagdo sfo usualmente escritos pelos proprios
clientes ou por uma equipe de teste externa (com a ajuda dos desenvolvedores) e tém

a finalidade de testar todo o sistema.

As atividades de teste sdo realizadas durante todo o processo de desenvolvimento
sendo mais fortemente executados durante a fase de Iteragdo. Todo cddigo €

construido com o proposito de satisfazer os resultados esperados. E, 4 medida que

Um estudo comparativo entre RUP e XP 39

um novo codigo & adicionado, novos testes devem ser realizados para assegurar que

ndo ocorram impactos negativos.

Testes Unitarios

Os testes unitarios sdo um dos elementos chave em XP, pois sdo criados antes do
codigo e armazenados em um repositorio junto ao codigo que sera testado. Um
codigo que ndo possua seu respectivo teste unitario ndo deve ser liberado, pois cada
parte do sistema com possibilidade de falha precisa ser verificada. Além disso, a
criacdo de testes unitirios antes do codigo prové uma melhor compreensdo dos

requisitos e direciona o foco dos desenvolvedores.

Um fator importante para a utilizagio de testes unitdrios, especialmente se estes
forem antomatizados, é a economia de custo que podem proporcionar ao identificar €
oferecer prote¢io contra €IToSs. E relevante considerar que descobrir todos os
problemas que podem ocorrer durante o desenvolvimento consome uma grande
quantidade de tempo, tornando-se necessario que um conjunto completo de testes

unitarios esteja disponivel logo no inicio, € no no ultimo més do projeto.

Nesta atividade os desenvolvedores criam e executam testes unitirios toda vez que
um cédigo é escrito ou modificado. Consertar pequenos problemas assim que sio
encontrados, em geral, leva menos tempo do que consertar grandes problemas a
poucas horas do prazo final. Outro beneficio dos testes unitarios automatizados € a
possibilidade de combinar um conjunto de alteragbes com a Gltima verséo liberada e

liberar novas versdes em um curto espago de tempo.

Testes de Aceitacdio
Os testes de aceitagio constituem uma das principais diferengas entre o XP e os

processos de desenvolvimento tradicionais. Em geral, sdio escritos pelos clientes ou
usudrios finais através das estorias de usudrio [7], com a assisténcia de um individuo
da equipe responsavel por testar o software. Durante uma itera¢do, as estdrias de
usuario selecionadas durante a reunifio de planejamento de iteragdo serdo traduzidas

em testes de aceitagio. Uma estéria de usudrio pode ter um ou mais testes de

Um estudo comparativo entre RUP ¢ XP 40

aceitagio para assegurar que a sua funcionalidade esteja de acordo com a
especificagio. Apés a implementagiio da estéria de usuério, o cliente especifica
cendrios para serem testados, e ela nfo é considerada completa até que tenha passado
por esses testes de aceitagio. Isso significa que novos testes de aceitagfio devem ser
criados a cada iteragio, ou a equipe de desenvolvimento nfo devera reportar

progresso.

Testes de aceitagfo sdo testes de sistema de caixa preta € cada um deles representa
algum resultado esperado. Testes de aceitagio também sdo usados como testes de

regressdo anteriores 4 liberag@io de uma versdo do software.

Nesse contexto, a garantia de qualidade é uma parte essencial do processo XP. Em
alguns projetos a garantia de qualidade é realizada por um grupo especializado,
enquanto em outros a garantia de qualidade ¢ integrada & propria equipe de
desenvolvimento. Em ambos os casos o XP requer que o desenvolvimento tenha uma

relacio muito proxima com as atividades de garantia de qualidade.

Dentre as principais metas dos testes de aceitagio estdo: fornecer aos clientes,
gerentes e desenvolvedores a confianga de que o produto inteiro esta progredindo na
direcdio certa; e checar cada incremento no ciclo XP para verificar se o valor de

negocio estd presente.

Os testes de aceitaglio, que sdo responsabilidade do testador e do cliente, s&o testes
de todo o sistema sob a perspectiva do cliente, e nfio testes que verificam cada

caminho possivel no cédigo (essa ¢ a finalidade dos testes unitarios).

4.3.3 - Codificacio

Essa atividade do processo esta focada nos métodos para a codificagiio dos modulos
que compdem o projeto. Em projetos de XP, a qualidade do cédigo é muito
importante. Para tentar manter esta qualidade, algumas praticas sdo utilizadas, como:

programagio aos pares, integragio continua € a criagdo dos testes antes da criag3o do

Um estudo comparativo entre RUP e XP 41

cédigo. Além disso, a participagio continua do cliente ¢ indispensavel para que a

equipe de desenvolvimento faga um bom trabalho.

Uma outra forma de manter a boa qualidade da codificagio é usar padrdes de
codificagio definidos. Além disso, as equipes de desenvolvimento ndo podem fazer
horas extras para terminar o projeto dentro do prazo, pois os estudiosos da area
acreditam que horas extras apenas diminuem a motivagdo dos desenvolvedores e,

conseqiientemente, o rendimento € a qualidade do trabalho realizado.

As atividades de codificagdo sio fortemente exploradas em todas as fases do

processo ja que o codigo ¢ o produto mais importante de um projeto XP.

Programacfo aos Pares

Esta pode ser considerada uma das abordagens mais controversas de XP. Todo
cddigo sera produzido por duas pessoas trabalhando juntas em um tnico computador.

O objetivo da programagéo aos pares ¢ reduzir as chances de se produzir um c6digo
ruim, encorajar o espirito de colaboragéo entre os programadores, diminuir os riscos
gerados quando uma Unica pessoa tem o conhecimento de partes do cddigo,
assegurando que todos os elementos da equipe de desenvolvimento tenham a visdo

completa do projeto.

Assim, se alguma tarefa exigir mais esforgo, serd facil alocar qualquer outro
desenvolvedor sem a necessidade de que este tenha que aprender a partir do ponto
inicial. Se apenas uma pessoa (normalmente o lider técnico ou gerente) tem a visdo
global do projeto, o projeto fica preso & dispomibilidade de tempo e aos
conhecimentos dessa pessoa. Se esta decidir abandonar o projeto as conseqiiéncias

podem ser avassaladoras.

A programagdo aos pares, aliada ao escalonamento da equipe de desenvolvimento,

permite a disseminagio do conhecimento técnico e do projeto.

Um estudo comparativo entre RUP e XP 42

Assim, permite-se a flexibilizagio das equipes contribuindo para maior

produtividade e uma melhor distribuigdo da carga de trabaiho.

Estratégia de Integracdo Continua

Em muitas equipes de desenvolvimento, ao terminar a codificagfio de um novo
modulo de codigo, os desenvolvedores fazem alguns testes € ja o integram ao
projeto. Como essa integrago pode ser feita de forma paralela, cddigos que nunca
foram testados juntos acabam sendo combinados, causando assim numerosos

problemas.

Um problema semelhante pode acontecer com os testes unitdrios. Se os
desenvolvedores nio tiverem acesso a um conjunto completo, correto e consistente
de testes unitdrios, pode-se acabar procurando por erros que ndo existem e ignorar

erros que realmente existem e ndo estdo sendo considerados.

Algumas opgdes de solugfio para os problemas gerados pela integragdo paralela s&o

propostas a seguir.

A primeira opgiio é que os desenvolvedores de cada modulo assegurem a correta
integragdo e revisdo do mesmo. Isto reduz o problema de erros, mas se houver forte

dependéncia entre os médulos, o problema persiste.

Outra opglio € apontar um integrador ou uma equipe de integragéo. Dois problemas
surgem com esta opgdo: como adequar a quantidade de pessoas da equipe de
integragio a cada um dos projetos; e quantas vezes por semana ou por meés a
integragio deverd ser feita a fim de que os desenvolvedores nfio trabalhem com

modulos obsoletos do projeto.

A solugio mais simples geralmente adotada é a integragdo estritamente seqiiencial
feita pelos proprios desenvolvedores. Essa opgdo exige que os codigos sejam
armazenados em repositorios protegidos e um sistema de travas seja usado pelos

desenvolvedores, mantendo assim a integridade das informacdes do repositorio apds

Um estudo comparativo entre RUP e XP 43

alteragGes. Para que isso seja possivel, uma integragdo continua dos modulos €
necessdria; pois assim evita-se ou identifica-se facilmente os problemas de
compatibilidade nas diferentes versdes geradas pelas vérias equipes depois da

inclusdo ou modificagdo de novos médulos.

A integragdo ¢ o tipo de atividade que deve ser feita para que ndo se tenha mais
trabalho no futuro, ou seja, se os desenvolvedores integrarem gradativamente
pequenas partes novas ao projeto, serd mais ficil e rapido a integragéio do projeto
todo. Caso contririo o projeto acabara gastando muito tempo depois do seu término

para realizar a integragdo, podendo ocasionar atraso na entrega do projeto.

Codigo coletive
O codigo coletivo encoraja todos a contribuir com novas idéias em todas as partes do

projeto. Qualquer desenvolvedor pode mudar qualquer parte do codigo para
adicionar novas funcionalidades, concertar erros, ou refazé-lo. Contudo, para que
esse tipo de trabalho funcione é necessario um controle rigido sobre quem executa as
mudangas e quando essas mudangas sdo feitas, garantindo assim 2 integridade do

c6digo que estd armazenado no repositorio.

Isto pode ser feito exigindo-se que, quando um dos desenvolvedores alterar um
determinado mdédulo, testes unitirios para esse mddulo sejam criados enquanto as
alteragdes estiverem sendo feitas. Apds o término das alteragdes no mddulo, todos os
testes unitarios sdo verificados para se ter certeza de que o cddigo esta de acordo. Se

isso acontecer, ele pode ser liberado e colocado no repositorio.

E ainda necessario manter o historico de tudo o que foi feito por cada um dos
desenvolvedores, incluindo: testes unitarios, cédigos adicionados, erros encontrados
e funcionalidades que foram alteradas em cada médulo.

O planejamento da iteragdo de desenvolvimento enfatiza o escalonamento de pessoas

na divisdo das tarefas de programagéo.

Um estudo comparativo entre RUP e XP 44

4.3.4 - Projeto

Em XP [10], o projeto é responsabilidade de toda a equipe e nfio de apenas uma
pessoa. Desta forma, todos os membros da equipe podem cooperar para a elaboragdo
de um projeto com melhor resultado do que o melhor dos projetistas poderia produzir

individualmente.

Um dos aspectos mais polémicos de XP ¢ sua rejeiciio & elaboragdo de um projeto
antecipado em prol de uma abordagem mais evolucionéaria. Esse aspecto ¢
considerado por seus opositores como um retorno ao desenvolvimento baseado em
tentativa ¢ erro. Porém seus adeptos acreditam que se o cdédigo for bem elaborado,
um bom projeto surgird como conseqii€ncia. Além disso, XP dispde de praticas como

integra¢do continua, teste e reconstrugdo, que tornam o projeto incremental possivel.

Simplicidade

Um dos principais principos de XP é: sempre faca o mais simples possivel A
simplicidade deve ser mantida durante o maior tempo possivel. Essa caracteristica
pode ser entendida se considerarmos o fato que um projeto simples sempre leva
menos tempo para acabar do que um projeto complexo e também € muito mais facil
de entender ¢ modificar. No entanto, é importante ressaltar que manter a

simplicidade de um projeto € um trabalho dificil.

Além disso, é preciso definir o que ¢ simplicidade. Caracterizar um sistema simples
como aquele que passa em todos os testes, garante clareza de cédigo, nfio possui
duplicagdo € usa o menor numero de classes e métodos possivel, ¢ uma alternativa.
Por outro lado, a restricio de simplicidade de um projeto nfo precisa ser tfo rigida,

afinal, a reconstrugdo deve e sera feita mais tarde.

A busca da simplicidade deve ser feita em todas as fases do ciclo de vida de um

projeto XP.

Um estudo comparativo entre RUP ¢ XP 45

Metafora do sistema

A metafora do sistema ¢ criada na fase de Exploragio do projeto. Uma metafora do
sistema & o que XP utiliza, no lugar de uma arquitetura formal, para descrever como
o sistema funciona. Tipicamente, envolve um conjunto de classes e padres que

formam o nucleo do sistema em construgao.

A metafora ajuda as pessoas envolvidas no projeto a compreender o sistema sem a
necessidade de um conhecimento especifico, na maioria das vezes, dificil de adquirir.
Para isso, o sistema é descrito em poucos paragrafos, deixando de lado o uso de
termos técnicos, facilitando a compreensdo ndo so pelos desenvolvedores, mas

também pelos clientes.

Cartdes CRC
Os cartdes CRC sio utilizados para gravar as responsabilidades ¢ colaboradores das
classes, por isso o nome derivado de Classe Responsabilidade Colaboragéo, estes

cartdes sdo mais utilizados durante a fase de Jteragfo do projeto XP

Individualmente, os cartdes CRC sdo usados para representar objetos. A classe do
objeto pode ser escrita no topo do cartdo, as responsabilidades listadas do lado
esquerdo ¢ as classes de colaboragdo listadas 4 direita de cada responsabilidade.
Esses cartdes sdo utilizados em uma sessdo CRC para simular o sistema €, passo a

passo, superar as fraquezas e os problemas do processo.

Um dos maiores beneficios dos cartdes CRC € o estimulo 3 criatividade; € uma das
maiores criticas ¢ a falta de projeto escrito o que, se necessdrio, pode ser resolvido
com a retencdo de alguns cartdes CRC, completamente preenchidos, para

documentagdo.

Solugdes especificas
Uma solugdo pontual pode ser criada concentrando-se apenas no problema que esta

sendo examinado e ignorando-se todas as outras preocupagoes. Desta forma,

solugdes potenciais poderdo ser exploradas.

Um estudo comparativo entre RUP ¢ XP 46

O objetivo dessa abordagem ¢é reduzir o risco de um problema técnico ou aumentar a

confiabilidade das estimativas.
Solugdes especificas podem ser mais necessarias durante a fase de Exploragio
quanto os programadores fazem testes para estabelecer a arquitetura do sistema ¢ na

fase de Producfio quando otimizagles podem ser necessarias.

Avaliacio da necessidade

O projeto, como dito anteriormente, ¢ elaborado em partes ¢, desta forma, cada ciclo
de iteragdo busca adicionar somente a funcionalidade especificada pelas estorias de
usuario escolhidas. XP considera que grande parte das tarefas extras nfio chegardo a
ser utilizadas e apenas o que é necessério para hoje deve ser levado em considerago.

As funcionalidades extras aparecerdo naturalmente quando forem necessarias.

O objetivo desta pratica ¢ diminuir a complexidade do projeto ao maximo ¢ facilitar
o teste, a alteracfio e a reconstrugio. Também contribui para a agilidade do processo

de iteragdio garantindo o cumprimento do cronograma de entrega da verséo.

Reconstrucio
A reconstrugdio baseia-se na remogdo de redundincia, eliminagdo de funcionalidades

inuteis, e reconstrugio de projetos obsoletos. Essa préitica garante a atualizagio

constante do projeto em XP.

Além disso, a reconstrugiio praticada durante todo o ciclo de vida do projeto, traz
alguns beneficios como: economia de tempo ¢ aumento da qualidade; manutengéo da
simplicidade do projeto a4 medida que esse evolui, a desordem e a complexidade
desnecessaria sio evitadas; € o codigo permanece claro e conciso garantindo maior

facilidade de compreensio, modificagio e extensdo.

Um estudo comparativo entre RUP e XP 47

4.4 - As quatro dimensdes do XP
XP segue um conjunto de dimensdes, principios e requisitos basicos que visam
alcancar eficiéncia e efetividade no desenvolvimento de software [7]. As dimensGes

sdo quatro: Comunicagfo, Simplicidade, Realimentagdo e Coragem.

4.4.1 - Comunicacio
XP leva em consideracio a grande importincia da comunicagdo, mas também
permite ndo fazer nenhuma documentagdo, ou muito pouca. Talvez seja justamente

por isso que XP tem conquistado jovens programadores.

A comunicacgo é definida como um fator chave para o sucesso de qualquer projeto,

seja ele usando XP ou outra metodologia.

Virias praticas de XP promovem uma maior comunicagdo entre os membros da
equipe. A comunicagiio ndio ¢ limitada por procedimentos formais. XP indica que se
use o melhor meio possivel, que pode ser:

e Uma conversa ou reunido informal;

¢ Um e-mail, um telefonema,

¢ Diagramas, se necessario (pode, mas n#io precisa, ser UML);

e O proéprio codigo;

¢ FEstorias elaboradas pelo usudrio-final; e

s ¢gic...

Também deve se dar preferéncia 4 comunicagio mais agil:
e Telefonema no lugar de e-mail;
o Presenca fisica no lugar de comunicagéo remota; e

e Cébdigo auto-explicativo no lugar de documentagfo escrita.

4.4.2 - Simplicidade
XP preconiza que ¢ melhor fazer algo simples hoje ¢ pagar um pouco mais amanhi
se mudancas forem necessérias, do que fazer algo mais complicado hoje e ndo usa-lo

amanhi. Por exemplo:

Um estudo comparativo entre RUP e XP 48

o Deve se projetar somente aquilo que esta contido nos requisitos;
e Deve-se programar somente aquilo que estd no projeto; e

e Deve-se testar somente aquilo que esta contido nos requisitos.

O resultado é que em XP termina-se de escrever um codigo sabendo que mais tarde

S€ra reescrito.

4.4.3 — Realimentac¢ao

E uma forma de determinar o corrente estagio do sistema.

Também envolve liberar versdes mais rapido, isto €, ter uma iteragio do projeto com
o cliente tdo logo quanto possivel, assim poderd perceber o que o cliente esta

achando do produto.
Isto promove um valoroso retorno do cliente para o programador.

Vérias praticas do XP garantem uma ripida realimentagao sobre varias etapas do
Processo:
e Realimentagio sobre qualidade do codigo (testes unitarios,
programagdo em pares, propriedade coletiva).
e Realimentagio sobre estado do desenvolvimento (estorias do usuario-

final, integragdo continua ¢ planejamento).

Por XP permitir uma maior agilidade:
e Erros detectados sdo corrigidos imediatamente;
e Requisitos e prazos reavaliados mais cedo;
¢ Facilita a tomada de decisdes;
e Permite estimativas mais precisas; €

¢ Maior seguranga e menos riscos para investidores.

Um estudo comparativo entre RUP e XP 49

Cliente
o Estérias "‘;‘ Estimativas ;
- Plo;rrigf]atle-e * YVersies

e | ancamento do Produto

Acordos {
Cronograma $ lteragies

Diretrizes Problemas

o i N il Planiejamento da lteracac il

Planejamento | ? Problemas
Respostas da fteragio 4| Dividas

e = Reunites Diarias
Planoe Didtio | | Problemas
i

P My e

Respestas Davidas

R R Y Negociagcdo em pares S i

Cantoes cacﬁ Tarefas Cumpridas

Teste de Aceitacao Cadige Integrade

" -

et ' ntegracio continua 56, i n——
Detalhies Defeitos éjc‘-‘dig" Dividas
SN T cste Unitario R
Confirmagio r

- ividas
Defeltos ﬁ'(:édlgo - s_

Programacgac em Pares

Figura 5 — Ciclo de realimentagdo do XP.

4.4.4 - Coragem
A coragem esta relacionada a enfrentar o risco de fazer alteragdes e propor algo novo
e melhor que simplifique o desenvolvimento. XP incentiva os programadores a terem

coragem para correr este risco.

Testes, integragdo continua, programago em pares sdo algumas das praticas do XP
que aumentam a confianga do programador e o ajudam a ter coragem para.
e Melhorar o desenho do codigo que estd funcionando para torna-lo
mais simples;
e Reestruturar o cédigo desnecessario;
e Investir tempo no desenvolvimento de testes;
o Alterar o desenho da arquitetura do projeto em estagio avangado do
projeto,

e Pedir ajuda aos que sabem mais;

Um estudo comparativo entre RUP e XP 50

e Dizer ao cliente que um requisito ndo vai ser implementado no prazo
prometido; e
e Abandonar processos formais e fazer desenho da arquitetura ¢

documentagio em forma de codigo.

4.5 - Principios basicos

As dimensdes: Comunica¢do, Simplicidade, Realimentagio e Coragem sfo muifo
vagas para nos ajudar a decidir quais praticas usar. Entdo, as dimensdes sdo
fundamentadas em alguns principios mais concretos para serem utilizados por XP:

1) Planejamento, também chamado de planejar o jogo: O processo de planejamento
de XP permite que se defina o valor de negécio dos recursos desejados e utilize
estimativas de custo fornecidas pelos programadores para decidir o que € necessario
ser feito e o que pode ser adiado.

2) Pequenos lancamentos: As equipes XP colocam um sistema simples em produgido
com antecedéncia e o atualizam freqiientemente em ciclos bastante curtos.

3) Metaforas do sistema: As equipes XP utilizam um sistema de nomes ¢ uma
descricio do sistema sem a utilizagio de termos técnicos, para gular o0
desenvolvimento e a comunicag@o como cliente.

4) Projeto simples: Um programa construido através do método XP deve ser o mais
simples possivel satisfazendo os atuais requisitos, sem a preocupagio de atender
outros que surgirdio no futuro. O foco estd em prover valor de negécio.

5) Teste: As equipes XP focalizam a validagio do software durante todo o processo.
Os programadores desenvolvem software escrevendo primeiro os testes, € $6 entdo o
software que atenda aos requisitos desses testes. Os clientes provém testes de
aceitagdio para ter certeza que 0s recursos necessarios estio sendo fornecidos.

6) Reconstrugio: As equipes XP procuram aperfeigoar o projeto do sistema durante
todo o desenvolvimento, mantendo a clareza do software: sem ambigiiidade, com alta
comunicagio, simples, porém completo.

7) Programagdo aos pares: Os programadores XP produzem o cédigo em pares, ou
seja, dois programadores trabalhando juntos na mesma maquina. Muitos

experimentos tém mostrado que a programagio aos pares produz software de melhor

Um estudo comparativo entre RUP e XP 51

qualidade com um custo similar ou menor do que o produzido por programadores
trabalhando individualmente.

8) Propriedade coletiva: Todo o codigo pertence a todos os programadores. Essa
caracteristica permite que a equipe trabalhe a toda velocidade, uma vez que as
alteragdes podem ser feitas sem atrasos, pois todos tém liberdade para fazé-las.

9) Integragfio continua: As equipes XP integram e constroem o sistema de software
varias vezes por dia. Isso mantém todos os programadores em sintonia € possibilita
um progresso rapido.

10) Quarenta(40) horas de trabalho semanal: Programadores exaustos cometem mais
erros. As equipes XP ndio trabalham por um tempo excessivo, mantendo-se, assim,
mais efetivas.

11) Cliente dedicado: Um projeto XP ¢ conduzido por um individuo dedicado (um
cliente), que determina os requisitos, atribui as prioridades, e responde as duvidas
dos programadores (relacionadas aos requisitos). Essa pritica melhora a
comunicagio € gera menos documentos, 0 que, em geral, é uma das partes mais caras
num projeto de software.

12) Cédigo padrio: Para que uma equipe trabalhe em pares de forma efetiva e
compartilhe a propriedade de todo o cddigo, todos os programadores precisam

escrever da mesma forma, com regras que assegurem a clareza do codigo.

Um estudo comparativo entre RUP e XP 52

5 - COMPARACAO ENTRE RUP E XP

Conforme vistos nos capitulos anteriores XP ¢ RUP sdo exemplos de processos de
desenvolvimento de software, ambos fluem de forma iterativa, O RUP € um processo
mais robusto gue pode se adaptar a varios tipos de projetos podendo ser considerado
tanto como uma metodologia tradicional (“pesada™) como uma metodologia agil

(“leve™).

RUP e XP compartilham caracteristicas de modo que cada um utiliza as melhores

praticas de desenvolvimento de software, mas os dois métodos diferem em termos da

sua adaptabilidade.

5.1 - Componentes de XP e RUP
A maioria dos processos tem alguns elementos comuns que tornam uma comparagio
sistematica possivel. Eles requerem para seqiiéncias ou grupos de atividades que sdo
executadas através de papéis para gerar artefatos ou produtos de trabalho, onde
alguns ou todos sdo entregues ao cliente. Assim uma base para comparar as duas
metodologias em termos de componentes seria [15]:
e Tempo e distribuigio de esforgo - como cada processo € organizado
com o passar do tempo;
e Artefatos — quais os produtos de trabalho sdo gerados, e produzidas ao
longo de um projeto baseado em XP ou RUP;
e Atividades - métodos especificos de produzir cada artefato aplicavel
dentro do processo;
e Disciplinas - comparagdo de modo no qual XP ¢ RUP delineiam as
4reas principais de preocupagio em engenharia de software; e
e Papéis - Diferengas entre papéis em RUP e papéis (posi¢des) dentro

de uma equipe em XP.

5.2 - Uma Breve Comparagiio
Em relagio ao XP nota-se a maioria dos seus principios de XP apresentam praticas

de bom senso que fazem parte de qualquer processo[16]. Isto se origina do fato que

Um estudo comparativo entre RUP ¢ XP 53

nem sempre se pretendia que XP se tornasse um processo ou uma metodologia
tradicional, mas um processo leve onde se deveria construir casos de teste até mesmo

antes do comego da construgfo.

A relagiio entre tempo e distribuigio de esforgo e as atividades sdo perfeitos para um
paradigma de desenvolvimento onde o teste ¢ o foco. Considerando que as
disciplinas planejadas sdo discretamente nomeadas, o nimero de papéis também é
destinado para um grupo de desenvolvimento pequeno. O fato de XP procurar ser
simples nas atividades, e o fato de procurar dar foco as atividades que séo realmente
de alta prioridade, as partes mais valiosas do sistema e que sdo identificadas no
momento. Em lugar de solugdes artificiosas para problemas que ndo sdo tio

importantes fazem com que XP seja considerada uma metodologia importante.

Ha lados potencialmente ruins, um deles € a dificuldade de incorporar programagao
em pares sem ter algum treinamento nesta metodologia. Também, projetar em
pequenas iteracdes ndio é natural a todos os membros da equipe, e a maioria deles na
verdade trabalha com a meta especulativa até o final, e se familiarizam muito tarde

com a metodologia no desenvolvimento[17].

J4 o RUP, observa-se que foi criado para estabelecer uma estrutura de processo
global. E planejado para ser geral ¢ amplo o bastante para ser usado por todos os
tipos de organizagdes de desenvolvimento de software, especialmente nas que faltam

uma cultura de processo forte.

Isto & substanciado pelo fato que existe um nimero grande de artefatos e papéis
definidos dentro do processo de desenvolvimento, e estes podem ser adaptados a

cada tipo de organizagio.

Olhando em detaihes para todos os componentes dos dois processos, observa-se que
RUP precisa ser configurado. Esta flexibilidade fundamental permite que ele seja

adequado a varios tipos de projeto.

Um estudo comparativo entre RUP ¢ XP 54

XP e RUP dio énfase a desenvolvimento de software de iterativo, procurando
impedir que recursos fiquem inativos durante o processo de desenvolvimento. Eles
diferem na freqiiéncia de iteragdes. XP executa mais atividades de desenvolvimento
em qualquer iteragdo, fazendo com isto que seja mais facil de administrar mudancas

e identificar corrigir defeitos.

O XP é falho ao estabelecer a arquitetura dos componentes para o processo de
desenvolvimento. Nfo especifica como dividir o sistema em componentes
exatamente, e niio sugere como fazer uso de componentes existentes. A falta de uma
arquitetura definida em XP ¢ um de seus elementos mais criticados. Por outro lado
alguns criticos acreditam que a falta de uma arquitetura completa acrescenta a

habilidade de XP para adaptar requisitos variaveis.

Tanto XP como RUP especificam o rastreamento das mudangas, mas diferem na
forma de execugdo. Em um projeto XP, mudangas podem ser feitas por qualquer um
a qualquer parte do sistema. Quando sdio feitas mudangas, elas sdo anotadas para
notificar aos outros. No RUP porém, vai-se mais adiante. Em qualquer tempo uma
mudanca & feita, entfio a arquitetura, modelo visual, e qualquer outra documentag&o
também sdo atualizadas. Este rastreamento de mudanga cuidadoso assegura que
todos os membros da equipe estdo atentos a uma mudanga, mas também requer uma

maior quantia de esforgo ¢ de recurso para acompanhar cada mudanga.

5.3 - Os doze principios
Os processos de software possuem elementos comuns como fluxo de trabalho,
artefatos gerados, definicdo de papéis para os envolvidos e praticas de trabalho. O
XP e o RUP diferem muito quanto a defini¢do do fluxo de trabalho, artefatos gerados
e definiciio dos papéis em virtude do RUP ser um processo mais amplo e criado para
ser adaptavel a vérios tipos de projetos e organiza¢es. Os doze principios basicos
apontados em XP serfo utilizados neste estudo comparativo. Sdo cles:

¢ Planejamento;

¢ Pequenos langamentos;

e Metaforas do Sistema,

Um estudo comparativo entre RUP ¢ XP 55

¢ Projeto Simples;

o Teste;

e Reconstrugio;

» Programacdo aos pares,

¢ Propriedade coletiva;

¢ Integragdo continua;

e Quarenta (40) horas de trabalho semanal,
o (liente dedicadoe

e Codigo padrio.

5.3.1 — Planejamento

Quando se trata de planejamento, RUP e XP concordam: planos mudam, e ndo €
possivel planejar um projeto completo em detalhes. O melhor a fazer € se antecipar
as mudancas e assegurar que 0s riscos associados estfio sob controle. De acordo com
XP, deveria-se priorizar as estérias que se tem que atender no sistema, e adquirir
estimativas técnicas para o esforgo exigido para implementar cada estoria. Estar
priorizando estérias pode ser o mesmo que priorizar os casos de uso da UML

utilizados no RUP.

Algumas das estdrias de exemplo de literatura de XP nfio séo realmente casos de uso,
assim pode nfio fazer sentido comparar os dois. Uma estéria descreve uma unidade

de trabalho, € XP assume que o contexto da estdria é dbvio.

Um caso de uso prové um jogo completo de operagSes que provéem valor a um
usuario de sistema. Pode se dizer entdio que as estorias e casos de uso complementam
um ao outro, e que um caso de uso pode ser realizado por multiplas estérias. Um
caso de uso envolve todas as pessoas do projeto, enquanto estdrias envolvem em

mais detalhes com desenvolvedores.

As estérias podem ser consideradas promessas para as conversas entre o cliente € 0
programador. Estas conversagdes sdo de grande valor, e o RUP especificamente lhe

pede para capturar esses resultados em casos de uso e outros artefatos que sao

Um estudo comparativo entre RUP e XP 56

exigidos. O XP insinua que se deveria capturar os resultados mas deveria prover uma
orientaciio em como fazer isto. Em XP, o lugar final para documentar requisitos ou

decisdes de projeto € o cddigo.

Infelizmente, codigo nfo é um meio de comunicagdio efetivo para todos os

stakeholders do projeto.

Estimativas técnicas adquiridas através do desenvolvedor que implementard uma
caracteristica no futuro é uma boa pratica. O RUP ndo entra em detalhe de como
obter estas estimativas, mas caso exista confianca no desenvolvedor, entfio pode
adotar esta pratica como parte do processo de plancjamento. Na realidade, ao se
entrar nos detalhes de resultados do projeto, estimativas para documentagéo,

treinamento, apoio ¢ desenvolvimento sdo feitas[18].

5.3.2 - Pequenos lancamentos

Dependendo de como ¢ analisado o RUP ¢ XP podem parecer bastante semelhantes
nos conceitos de um langamento[18]. O RUP define um langamento como “uma
versfio estavel, versio executivel de produto, junto com qualquer artefato necessario
para usar este langamento, como notas de liberag@io ou instalagdo, instrugdes”. Além
disso, de acordo com o RUP, langamentos sdo ou internos (ndo liberados para o

usuario final) ou externos (liberado para o usuario final) [2].

XP define um langamento como “uma pilha de estdrias que junto fazem sentido
empresarial”[10]. A pratica de pequenos langamentos parece coincidir com a pratica
de integragdo continua. Se for interpretado que as estorias podem significar ndo so o
codigo como também qualquer artefato necessario & liberagdo, e aceitar-se o
langamento como interno ou externo, entdo RUP e XP, possuem o conceito de

langamentos quase idénticos.

O RUP considera mais que sé cédigo. Um langamento, especialmente um externo
para o cliente, pode ser inutil a menos que esteja acompanhado por notas de

langamento, documentagio, e treinamento.

Um estudo comparativo entre RUP ¢ XP 57

O XP prioriza o c6digo ¢ assume o resto se aparecer, ja que o cédigo € o artefato
primarioc de XP, os outros precisam ser derivados disto. Isto insinua certas
habilidades que nfio podem ser Obvias. Por exemplo, programadores poderiam
precisar ler o c6digo para entender como funciona o sistema para produzir a

documentacio.[7]

Pode se assumir também que os lancamentos externos de XP sdo tudo que deve ser

entregue a um cliente externo. Na realidade, XP nfo ¢ claro sobre isto.[18]

Quando se é incapaz de entregar um sistema ao cliente, poderia-se considerar outros
modos de avaliagdo, como prova de avaliagdo. Em um projeto RUP, tipicamente
entrega-se o sistema como bem ao cliente na Ultima iteragdo de construgdo € nas
iteragdes de fase de transi¢dio enquanto no XP cada iteragdio termina com uma

entrega de um executavel ao cliente{10].

5.3.3 - Metéfora de sistema

XP usa uma metifora para o sistema e o0 RUP usa uma arquitetura formal. Esta
metafora de sisterna é uma estoria compartilhada simples de como o sistema trabalha.
FEsta est6ria envolve tipicamente varias classes ¢ padrdes dos que moldam o sistema
que estd sendo construido. Baseado em comparagdes com algo familiar, padrdes nos

ajudam a entender algo novo ¢ pouco conhecido.

A metafora de sistema de XP pode ser uma substituigio satisfatoria para a
arquitetura em alguns casos, mas normalmente s6 em sistemas pequenos. Para
muitos, se nfo a maioria dos sistemas de software, precisa-se mais que uma simples

estoria.[19]

O RUP ja oferece um contraste, ¢ um processo centrado na arquitetura [6]. A
arquitetura ¢ mais que uma metafora, embora possa incluir varias metiforas. A
arquitetura estd preocupada com a estrutura, comportamento. contexto, Uuso,
funcionalidade, desempenho, reutilizagdo, abrangéncia, restrigdes, possivels

alteracBes, e estéticas. Normalmente ndo ¢ possivel capturar tudo isto dentro uma

Um estudo comparativo entre RUP e XP 58

simples metafora. Arquitetura n3o prové uma representagdo completa do sistema
inteiro. Se concentra no que ¢ arquiteturalmente significante ¢ importante reduzindo

riscos.

O RUP prové com riqueza orientagdes de como construir € administrar a arquitetura.
Ajuda o analista a construir visdes diferentes da arquitetura para propdsitos
diferentes.[6] Visdes diferentes s3o necessarias porque h4 aspectos diferentes que

precisam ser realgados e pessoas diferentes que precisam ver a arquitetura.

Um projeto RUP procurara definir logo no inicio a arquitetura. Freqiientemente um
executdvel da arquitetura é produzido durante a Fase de Elaboragdo. Isto prové uma
oportunidade para avaliar solugdes e riscos téenicos criticos, € a arquitetura €

construida durante as iteragSes de construgfio subseqiientes.

Uma arquitetura executavel é uma implementagio parcial do sistema, construida para
mostrar fungdes e propriedades selecionadas do sistema, que em geral satisfazem
requisitos ndo funcionais. E construida durante a fase de elaboragdo para reduzir
riscos relacionados a desempenho, processamento, capacidade, confianga etc, de
forma que o completo funcionamento pode ser somado & capacidade do sistema na

fase de construgdo em uma fundagio solida.[9]

5.3.4 - Projeto Simples
O XP descreve que se construa o sistema simples que satisfaga os requisitos atuais,
ndo vislumbrando caracteristicas que ainda ndo foram solicitadas. Isto significa que

devem ser implementadas quando forem realmente necessarias e ndo quando se

percebe que isso poderia ser necessario no futuro.

O RUP descreve da mesma maneira mas com palavras diferentes: Administre suas
exigéncias, continuamente priorize, ¢ avalie progresso. Bem definidos, priorizados os

requisitos simplificam a decisdo do desenvolvedor sobre o que fazer.

Um estudo comparativo entre RUP e XP 59

O RUP também encoraja o uso de componentes ¢ os modelos da UML para ajudar

administrar a complexidade de projeto.

E equivocada a visio que em XP niio se tenha que prestar atengiio 4 infra-estrutura e
arquitetura. Mas projeto simples ndo significa que se pode ignorar a infra-estrutura
exigida ou a arquitetura. H4 uma diferenga grande entre RUP e XP nesta area. Ja que

um dos pilares do RUP ¢ a arquiteturaf18].

5.3.5 - Teste

Criar os testes antes do codigo € uma das regras de XP, outra é que o cliente prové o
teste de aceitagdo. Programadores escrevem testes unmitarios e asseguram que o
codigo faz o que ¢ exigido. Clientes escrevem teste de aceitagfio para assegurar que o
sistema faz o que € suposto que ele faca. O RUP tem uma estrutura para testar e

prové orientagdo em como escrever testes efetivos.

Além de teste unitario e teste de aceitagio podem ser requeridos: por exemplo, testes
de carga etc. Combinando o RUP e XP, pode ser adquirido um foco de qualidade

excelente para o software.

Em XP, a equipe de desenvolvimento usa os resultados de teste para decidir se o
sistema estd pronto para ser entregue ao cliente. Se o sistema passa por todos os
testes de aceitagfo, entdio, 0 software esta pronto. O RUP sugere outros critérios de
aceitagdo além de testar. Dependendo do projeto, poderia-se considerar o
treinamento do cliente, instalagdo, documentagdo, e varios outros artigos em seus
critérios de aceitacdo de produto. Simplesmente porque o sistema passou em alguns
testes ndo asseguram que um programador (ou o par de programadores) nfio inseriu
uma armadilha em seu software. As vezes, dependendo do tipo de sistema, onde é
necessario codigo mais rigoroso, inspe¢des por auditores independentes sdo

necessarias[18]

Um estudo comparativo entre RUP ¢ XP 60

5.3.6 - Reconstrucio

A reconstrugio pode ser considerada também uma técnica para manter o projeto
simples. O RUP nfo diz para ser feito dessa forma, mas nfio ¢ contra, porém alerta
que a reconstrugdio pode criar um risco para a equipe. O que € simples para um
programador pode ser complexo para outro. Se muita reconstrucio ¢ feita, entdo
pode ser que esteja gastando um tempo valioso apenas reescrevendo o que ja estava
escrito. O XP por sua vez incentiva & reconstrugio como forma de manter o cédigo

simples ao longo das manutengdes e do ciclo de vida do projeto [18]

5.3.7 - Programacio aos pares
Ha evidéncia que programagdo aos pares ¢ um modo efetivo de melhorar a
produtividade do programador. Os programadores permanecem mais concentrados, €
por eles adquirem avaliagio imediata 4 qualidade melhora. Programagio aos pares ¢
um modo para evitar revisdes de cddigo, mas coloca algumas restricdes a equipe do
projeto;

. a equipe deve estar no mesmo local de trabalho; ¢

. os pares devem ter personalidades e habilidades compativeis.

O XP tem como base no seu processo a programagdio aos pares para aumentar a
produtividade e a qualidade do produto gerado. O RUP por sua vez nio o explicita e
como é um processo que abrange vérios tipos e tamanhos de projetos ndo € sempre

que isto pode ser aplicado[19].

5.3.8 - Propriedade coletiva
Em XP todos os membros da equipe de desenvolvimento t€m permissdo para fazer

mudangas a qualquer parte do cddigo e tem a responsabilidade de fazé-las.

Ha um beneficio 6bvio com esta pratica. Quando se necessita mudar o codigo, pode
se mudar ¢ pode com isto ganhar tempo em seu trabaiho sem ter que esperar que
outra pessoa o faga. Porém para que esta pratica funcione € necessario também fazer

integracio continua e manter uma atividade intensa de testes. Se qualquer codigo

Um estudo comparativo entre RUP e XP 61

mudar, entdo é necessario fazer os testes e ndo se considerar terminada a mudanca

até toda a passagem de testes.

Mas esta propriedade coletiva pode nédo funcionar bem em todos os projetos. Grandes
sistemas contém muito conteido para uma tnica pessoa entender tudo a um nivel
detalhado. Alguns sistemas pequenos incluem freqilentemente cddigo que €
complexo devido a seu dominio ou a fungdo executada. Se um especialista €

requerido, entdo propriedade coletiva pode ndo ser apropriada.

Quando um sistema ¢ desenvolvido em um ambiente distribuido, nfo € possivel que
todo o mundo para modifique o codigo. Nestes casos, XP oferece uma prética
apoiando chamada “code stewardship”. [12] Nesta pritica, uma pessoa, tem a
responsabilidade do c6digo, com contribuigdo de outros membros da equipe. Todos
podem alterar o este trecho do codigo porém a pessoa escolhida tem responsabilidade
de verifica-lo. N&o existe nenhuma diretriz de quando aplicar esta pratica em vez de

propriedade coletiva.

Propriedade de coédigo coletiva prové um modo para a equipe mudar codigo
rapidamente quando precisa mudar. A desvantagem potencial nisto € que todo o
codigo é mudado, entdio ha alguns itens que podem ser necessérios controlar de um
modo centralizado, por exemplo, quando o cddigo é modificado porque falta um
pouco de funcionalidade. Se um programador estd implementando uma estéria (ou
um caso de uso, ou um cenario), e requer comportamento de uma classe, a
propriedade de codigo coletiva permite a classe ser modificada naquele mesmo lugar.
Contanto que o sistema seja pequeno bastante para um programador entender tudo do
codigo, isto poderia funcionar bem. Mas como o sistema se torna maior, € possivel
que a mesma funcionalidade possa ser somada para codificar ¢ isso exista em outro
lugar. Esta redundéncia poderia ser pega a algum ponto e o codigo reconstruido, mas
¢ certamente possivel que o codigo seja alterado e a funcionalidade comece a

apresentar problema em outra funcionalidade do sistema.

Um estudo comparativo entre RUP ¢ XP 62

A propriedade coletiva de codigo pode comegar a ser utilizada em um projeto,
contanto que se tenha boa administragéo de codigo e ferramentas efetivas, que entdo
trabalhardo até certo ponto. O lider de projeto ou gerente precisa controlar quando a

base de cédigo fica muito grande ou muito especializada.

Quando isto acontecer, pode ser necessirio estruturar o sistema em um conjunto
apropriado de componentes ¢ subsistema e assegurar quais membros especificos da
equipe s3o responsdveis por eles. O RUP prové orientagio de como estruturar o

sistema.

Pelos problemas citados acima O RUP ndo ¢ favoravel 4 propriedade de cddigo

coletiva. Ao contrario propriedade coletiva é um dos principios de XP.[9]

5.3.9 - Integracio continua

Todo programador em um projeto XP deve poder alterar o codigo e assegurar 0
trabalho, nfio sé por testes unitdrios, mas também por testes de aceitago. [sto requer
freqitentes integragdes: uma ou mais por dia. Para que isto realmente possa ocorrer é
necessario uma administragio de configuragdo poderosa, de ferramentas ¢ um

processo efetivo para ser usado.

Este ponto estd de acordo no RUP e XP. Porém o RUP prové diretrizes para
integragio continua como também informacdo especifica para o uso de

ferramentas.[19]

5.3.10 — Quarenta (40) horas de trabalho semanal

Estudos indicam que a maioria das pessoas diminuem o rendimento rapidamente ¢
consideravelmente quando eles investem mais de quarenta horas no trabalho,
especialmente quando ¢ habitual. Um projeto XP proibe duas semanas sucessivas de
trabalho extra. O RUP nfio proibe explicitamente como o XP, porém concorda com

esta pratica.

Um estudo comparativo entre RUP ¢ XP 63

5.3.11 - Cliente dedicado

Originalmente, 0 XP descreve que um cliente tem que sentar com a equipe,
disponivel para perguntas e respostas, solucionando disputas, e planejando as
prioridades em pequena escala. Isto foi refinado mais adiante para, um projeto de XP
¢ guiado por um individuo dedicado que é autorizado a determinar requisitos,

prioridades, respostas as perguntas dos programadores.

O RUP ¢ mais flexivel. Embora sempre manteve que o cliente, na realidade todos os
stakeholders, devem ser representados adequadamente no projeto, 0 RUP também
reconhece que ndo ¢ sempre possivel ou desejavel ter um cliente real situado com a
equipe de desenvolvimento. Ao invés disto, RUP define varios papéis que sio
responsaveis por determinar as metas de projeto, extensdo, e assim por diante, ¢ diz
que um cliente (no local ou nio) ou alguma outra pessoa apropriada na organizagio
pode executar as atividades tragadas a estes papéis. Ndo ¢ importante se a pessoa é
um cliente atual, ou se ele ou ela estd de fato no local. O que é importante € que a
pessoa esteja disponivel para esclarecer dividas e seja responsével o suficiente para
produzir a informagfio necessdria para a equipe progredir tdo depressa quanto

possivel.

5.3.12 - Cédigo Padrio

O RUP ¢ XP concordam que ¢ necessério se ter codigos padrdes, mas que mais

importante que ter estes padrdes ¢ utiliza-los,

Um estudo comparativo entre RUP e XP

5.3.13 - Resumo

Com a Tabela 1 ¢ possivel verificar o resumo das comparagdes dos 12 principios,

indicando o quanto RUP concorda com os principios praticados por XP.

Tabela 1 — Resultado da comparag¢do RUP com XP.

Principios do XP XP RUP
Planejamento Apédia esta pratica. Apdia esta pratica.
Pequenos Define como resultado | Considera mais que o c¢0digo no
langamentos final para o langamento | langamento.

o codigo.
Metaforas do Utilizado para definir a | E centrado na arquitetura.
Sistema arquitetura. Nao

considera uma

arquitetura formal

Projeto Simples

Apbia esta pratica.

Apoia esta pratica.

Teste Apdia esta pratica. Apoia esta pratica

Reconstru¢do Apoia esta pratica Alerta para o risco adicionado
ao projeto.

Programagéo aos Apdia esta pratica. Alerta que sdo em todos que

pares pode ser aplicado

Propriedade Apdia esta pratica. Considera que nem todos os

coletiva membros da equipe estdo aptos
a alterar qualquer parte do
codigo.

integracio Apéia esta pratica. Apoia esta pratica

continua

Quarenta horas de | Apdia esta pratica. Concorda mas nfio proibe

trabalho semanal explicitamente.

Cliente dedicado Apdia esta pratica. O cliente ndo precisa estar

dedicado, mas alguém que o

represente.

Codigo padrdo

Apoia esta pratica.

Apoia esta pratica.

Um estudo comparativo entre RUP e XP 65

6 - CONCLUSOES
XP ¢ focado em desenvolver o codigo, ajuda a reduzir os riscos e assegura que ¢
possivel entregar o produto certo ao cliente no prazo certo. Porém, quando se otha
para um projeto de desenvolvimento com um conjunto completo de entregéveis,
cddigo, documentagdo, treinamento, € apoio, hd muitas coisas no RUP que ndo sdo
considerados em XP. Com isto é preciso determinar o que é necessério para o projeto
onde a metodologia serd aplicada. Segue abaixo alguns dos itens que devem ser
considerados.
. Modelagem de Negocio. O assunto inteiro de modelagem de negocio
& ausente em XP. S#o construidos sistemas em uma organizagdo, o
conhecimento da organizagio pode ser importante a0 identificar 0s requisitos
e para entender como a solugdo pode ser aceita;
. Inicio do projeto. XP assume que o projeto j& estd justificado e nfio diz
como a justificativa acontece. Em muitas organizagdes, um caso empresarial
deve ser feito antes de um projeto sério comegar. O RUP ajuda a equipe a
fazer seu caso empresarial por desenvolver visdes para todas as pessoas
importantes para o projeto; e
° Entrega. XP prioriza o codigo e a entrega para ele ¢ apenas o sistema
funcionando e ndio prioriza materiais € apoio, documentagdo de apoio etc.
Porém a maioria dos projetos necessitam destes artefatos. Produtos de
software comerciais, por exemplo, requerem empacotamento, distribuigdo,
manuais de usugrio, materiais de treinando, ¢ uma organizagdo de apoio. O

RUP prové uma orientagdo de como criar materiais apropriados.

A diversidade de processo ¢ importante. Um tnico formato ndo se ajusta a todos 0s
projetos. O processo que é usado para o projeto deve ser apropriado para cle.
Considera-se que é necessario adotar a melhor forma para o projeto. Consideram-se
todos os aspectos ¢ riscos. Usa-se tudo que é necessario, mas balancea-se para se ter

o peso ideal para o projeto em questio.

O RUP ¢ XP provéem duas aproximagdes diferentes de desenvolvimento de projetos

de software. Eles complementam um ao outro de varios modos.

Um estudo comparative entre RUP ¢ XP 66

O XP se concentra em codigo e técnicas para uma equipe pequena criar codigo. Da
énfase a comunicagdo de interpessoal ¢ investe o minimo esforco em artefatos que

ndo sdo o codigo.

O RUP ¢é uma estrutura de processo que pode ser configurado para tipos diferentes de
projetos. Consideram-se riscos ¢ técnicas de diminuigio de riscos. O RUP ¢
interpretado mal freqilentemente como sendo pesado e burocratizade porque, como
uma estrutura, ele prové informagfo de processos para muitos tipos de projetos. Na
realidade, um exemplo configurado de RUP pode ser muito leve, dependendo dos
risco e do projeto. Pode incorporar algumas das excelentes técnicas de XP e outros

processos se eles sdo apropriados para o projeto.

6.1 - Contribuicdes do trabalho
A escolha e a aplicagiio do processo adequado de desenvoivimento afeta dirctamente
a qualidade e o sucesso dos projetos. E necessario avaliar as caracteristicas do

projeto e da organizacdo para que isto seja feito da maneira mais adequada.

Conhecer e avaliar os processos existentes identificando suas caracteristicas,
diferencas, melhores praticas ¢ como podem ser otimizados ajudam os gerentes €

interessados a decidir qual o melhor processo a ser utilizado.

O RUP ¢é um processo mais completo e adaptivel a varios tipos de projetos €
organizagdes, enquanto o XP ¢ mais adequado a projetos com caracteristicas
especificas. Porém pode-se notar que eles ndo sfo excludentes, isto &, € possivel se
escolher um dos dois processos ¢ aplicar praticas do outro para se chegar a um

processo mais otimizado e adequado para cada organizagio.

6.2 - Trabalhos futuros

QOutros trabalhos podem ser iniciados a partir desta monografia como descritos
abalxo:

. Aprofundar a comparagdo de RUP ¢ XP em relagdo aos 12

principios

Um estudo comparativo entre RUP ¢ XP 67

° Outras comparagdes analisando fases, artefatos e envolvidos
. Estudar como XP pode ser adequado a projetos maiores ¢ de

maior complexidade utilizando-se de artefatos e técnicas do RUP.

Um estudo comparativo entre RUP ¢ XP 68

7 - REFERENCIAS BIBLIOGRAFICAS

[1] THE STANDISH GROUP REPORT.“CHAOS”, 1995.
Disponivel em: <http://www.scs.carleton.ca/~beauw/PM/Standish-Report.html>.
Acesso em: outubro/2003.

[2] PHILIPE KRUCHTEN. Rational Unified Process—An Introduction. 2 Edigéo.
Addison Wesley,2000. 320p.

[3] BARRY W. BOEHM. USC Anchoring the Software Process, novembro 1995.
Disponivel em: <http://sunset.usc.edw/publications/ TECHRPTS/1995/uscese95-
507/ASP.pdf> Acesso em: outubro/2003.

[4] IVAR JACOBSON; GRADY BOOCH;JIM RUMBAUGH. Unified Software
Development Process. 1 Edigao. Addison Wesley, 1999. 512p.

[5] GRADY BOOCH; JIM RUMBAUGH; ITVAR JACOBSON. Unified Modeling
Language—User’s Guide. 1 Edigio. Addison Wesley, 1999. 490p.

[6] PHILIPE KRUCTHEN. Architetural Blueprints the 4+1 view model of
architeture, novembro 1995. Disponivel em:
<www.rational.com/media/whitepapers/Pbkdpl.pdf>. Acesso em: novembro de
2003,

[7] BECK, KENT. Extreme Programming Explained: Embrace Change. 1 Edicao.
Addison Wesley, 1999. 224p.

i8] ALAN RADDING. Radical simplicity, but whith control, abril 2001 Disponivel
em: hitp://www.informationweek.com/831/appdev.htm. Acesso em: outubro 2003

Um estudo comparativo entre RUP e XP 69

[9] GARY POLLICE, RUP and XP Part II: Valuing Differences, 2001. Disponivel
em:<http://www.therationaledge.com/content/apr 01/f xp2_gp.html> Acessado em:
novembro de 2003

[10] CORSARO, ANGELO. Extreme Programming Concepts, abril 2001.
Disponivel em:<http://tac.doc. wustl.edu/~corsaro/resources/papers/XPConcepts. pdf>
Acessado em: outubro de 2003.

[I1] MARTIN FOWLER. Continuos integration. Disponivel em
<http://www.martinfowler.com/articles/continuousIntegration html> Acessado em

novembro 2003

[12]) DAVE SMITH.. Code StewardShip. Disponivel em:
<http://c2.com/cgi/wiki?CodeStewardship>. Acessado em: outubro de 2003.

[13] BACH, J. Enough about process: What we need are heroes. IEEE Software, v.
12, n. 2, p. 96-98, Marco 1994.

[14] JIM HEUMAN, Introduction to business modeling using the UML. Disponivel
em: <http://www.therationaledge.com/content/mar_01/m_uml_jh.html> Acessado

em: novembro de 2003

[15] JOHN SMITH, A Comparison of Rup and XP,2001. Disponivel em:
<http://www.rational.com/products/whitepapers/423 jsp> Acessado em: novembro
de 2003

[16] OGNIAN PISHE. Notes on a Practical Guide and Thoughts on Software
Development. Journal of Object Technology, ETH Zurich, Vol 1, N°2, julho-agosto,
2002.

[171 ROBERT L. GLASS, extreme Programming: The Good, the Bad, and the
Bottom Line,2001. Disponivel em:
<www2.umassd.edw/SWPI/xp/papers/IEEESWNov2001/56112.pdf> Acessado

em: novembro de 2003

Um estudo comparativo entre RUP ¢ XP 70

[18] GARY POLLICE, RUP and XP, Part I: Finding Common Ground, 2001.
Disponivel em:<http://www.therationaledge.com/content/mar_01/f xp_gp.html>

Acessado em: novembro de 2003

[19] RATIONAL SOFTWARE CORPORATION. Concept: Agile Practices and
RUP. Disponivel em:
<http://latitude.east.asu.eduw/494/rup/RationalUnifiedProcess/process/workflow/envir
onm/co_agile. htm>. Acessado em novembro de 2003.

